Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiplicity one for min–max theory in compact manifolds with boundary and its applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove the multiplicity one theorem for min–max free boundary minimal hypersurfaces in compact manifolds with boundary of dimension between 3 and 7 for generic metrics. To approach this, we develop existence and regularity theory for free boundary hypersurface with prescribed mean curvature, which includes the regularity theory for minimizers, compactness theory, and a generic min–max theory with Morse index bounds. As applications, we construct new free boundary minimal hypersurfaces in the unit balls in Euclidean spaces and self-shrinkers of the mean curvature flows with arbitrarily large entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here a metric is said to be bumpy if each closed immersed minimal hypersurfaces has no Jacobi field, and the set of bumpy metrics in a closed manifold is generic in the Baire sense by White [56, 57].

References

  1. Almgren, F.: The theory of varifolds. In: Mimeographed Notes (1965)

  2. Almgren, F.J., Jr.: The homotopy groups of the integral cycle groups. Topology 1, 257–299 (1962)

    MathSciNet  Google Scholar 

  3. Ambrozio, L., Carlotto, A., Sharp, B.: Compactness analysis for free boundary minimal hypersurfaces. Calc. Var. Partial Differ. Equ. 57(1), 22 (2018)

    MathSciNet  Google Scholar 

  4. Angenent, S.B.: Shrinking doughnuts. In: Nonlinear Diffusion Equations and Their Equilibrium States (Gregynog, 1989), vol. 3, pp. 21–38 (1992)

  5. Bernstein, J., Wang, L.: A sharp lower bound for the entropy of closed hypersurfaces up to dimension six. Invent. Math. 206(3), 601–627 (2016)

    MathSciNet  Google Scholar 

  6. Bernstein, J., Wang, L.: Closed hypersurfaces of low entropy in R4 are isotopically trivial. Duke Math. J. 171(7), 1531–1558 (2022)

    MathSciNet  Google Scholar 

  7. Besse, A.L.: Manifolds Einstein, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10. Springer, Berlin (1987)

  8. Carlotto, A., Franz, G., Schulz, M.B.: Free boundary minimal surfaces with connected boundary and arbitrary genus. Camb. J. Math. 10(4), 835–857 (2022)

    MathSciNet  Google Scholar 

  9. Chodosh, O., Choi, K., Mantoulidis, C., Schulze, F.: Mean curvature flow with generic initial data (2020). arXiv:2003.14344 [math]

  10. Chodosh, O., Christos, M.: Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates. Ann. Math. 191(1), 213–328 (2020)

    MathSciNet  Google Scholar 

  11. Colding, T.H., Minicozzi, W.P.: Generic mean curvature flow I: generic singularities. Ann. Math. 175(2), 755–833 (2012)

    MathSciNet  Google Scholar 

  12. Colding, T.H., Minicozzi, W.P.: Smooth compactness of self-shrinkers. Comment. Math. Helv. 87(2), 463–475 (2012)

    MathSciNet  Google Scholar 

  13. Colding, T.H., Minicozzi, W.P.: Complexity of parabolic systems. Publ. Math. Inst. Ht. Études Sci. 132, 83–135 (2020)

    MathSciNet  Google Scholar 

  14. Fracer, A., Li, M.M.C.: Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary. J. Differ. Geom. 96(2), 183–200 (2014)

    MathSciNet  Google Scholar 

  15. Fraser, A., Schoen, R.: Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math. 203(3), 823–890 (2016)

    MathSciNet  Google Scholar 

  16. Fraser, A.M.: On the free boundary variational problem for minimal disks. Commun. Pure Appl. Math. 53(8), 931–971 (2000)

    MathSciNet  Google Scholar 

  17. Gromov, M.: Dimension, nonlinear spectra and width. Geom. Asp. Funct. Anal. 1988, 132–184 (1986/87)

  18. Grüter, M.: Optimal regularity for codimension one minimal surfaces with a free boundary. Manuscr. Math. 58(3), 295–343 (1987)

    MathSciNet  Google Scholar 

  19. Grüter, M., Jost, J.: Allard type regularity results for varifolds with free boundaries. Ann. Scuola Norm. Sup. Pisa Cl Sci. 13(1), 129–169 (1986)

    MathSciNet  Google Scholar 

  20. Guang, Q., Li, M.M.C., Wang, Z., Zhou, X.: Min–max theory for free boundary minimal hypersurfaces II: general Morse index bounds and applications. Math. Ann. 379(3–4), 1395–1424 (2021)

    MathSciNet  Google Scholar 

  21. Guang, Q., Li, M.M.C., Zhou, X.: Curvature estimates for stable free boundary minimal hypersurfaces. J. Reine Angew. Math. 759, 245–264 (2020)

    MathSciNet  Google Scholar 

  22. Guang, Q., Wang, Z., Zhou, X.: Compactness and generic finiteness for free boundary minimal hypersurfaces I. Pac. J. Math. 310(1), 85–114 (2021)

    MathSciNet  Google Scholar 

  23. Guth, L.: Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal. 18(6), 1917–1987 (2009)

    MathSciNet  Google Scholar 

  24. Harvey, R., Lawson, B.H.: Extending minimal varieties. Invent. Math. 28, 209–226 (1975)

    MathSciNet  Google Scholar 

  25. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  26. Irie, K., Marques, F., Neves, A.: Density of minimal hypersurfaces for generic metrics. Ann. Math. 187(3), 963–972 (2018)

    MathSciNet  Google Scholar 

  27. Kapouleas, N., Kleene, S.J., Møller, N.M.: Mean curvature self-shrinkers of high genus: non-compact examples. J. Reine Angew. Math. 739, 1–39 (2018)

    MathSciNet  Google Scholar 

  28. Kapouleas, N., Li, M.M.C.: Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and the equatorial disc. J. Reine Angew. Math. 776, 201–254 (2021)

    MathSciNet  Google Scholar 

  29. Ketover, D., Zhou, X.: Entropy of closed surfaces and min–max theory. J. Differ. Geom. 110(1), 31–71 (2018)

    MathSciNet  Google Scholar 

  30. Li, M.M.C., Zhou, X.: Min–max theory for free boundary minimal hypersurfaces, I: regularity theory. J. Differ. Geom. 118(3), 487–553 (2021)

    MathSciNet  Google Scholar 

  31. Li, Y.: Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics. J. Differ. Geom. 124(2), 381–395 (2023)

    MathSciNet  Google Scholar 

  32. Lin, L., Sun, A., Zhou, X.: Min–max minimal disks with free boundary in Riemannian manifolds. Geom. Topol. 24(1), 471–532 (2020)

    MathSciNet  Google Scholar 

  33. Liokumovich, Y., Marques, F.C., Neves, A.: Weyl law for the volume spectrum. Ann. Math. 187(3), 933–961 (2018)

    MathSciNet  Google Scholar 

  34. Marques, F.C., Montezuma, R., Neves, A.: Morse inequalities for the area functional. J. Differ. Geom. 124(1), 81–111 (2023)

    MathSciNet  Google Scholar 

  35. Marques, F.C., Neves, A.: Min–max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)

    MathSciNet  Google Scholar 

  36. Marques, F.C., Neves, A.: Morse index and multiplicity of min–max minimal hypersurfaces. Camb. J. Math. 4(4), 463–511 (2016)

    MathSciNet  Google Scholar 

  37. Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209(2), 577–616 (2017)

    MathSciNet  Google Scholar 

  38. Marques, F.C., Neves, A.: Morse index of multiplicity one min–max minimal hypersurfaces. Adv. Math. 378(58), 107527 (2021)

    MathSciNet  Google Scholar 

  39. Marques, F.C., Neves, A., Song, A.: Equidistribution of minimal hypersurfaces for generic metrics. Invent. Math. 216(2), 421–443 (2019)

    MathSciNet  Google Scholar 

  40. Maximo, D., Nunes, I., Smith, G.: Free boundary minimal annuli in convex three-manifolds. J. Differ. Geom. 106(1), 139–186 (2017)

    MathSciNet  Google Scholar 

  41. Morgan, F.: Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc. 355(12), 5041–5052 (2003)

    MathSciNet  Google Scholar 

  42. Mramor, A., Wang, S.: Low entropy and the mean curvature flow with surgery. Calc. Var. Partial Differ. Equ. 60(3), 96 (2021)

    MathSciNet  Google Scholar 

  43. Møller, N.M.: Closed self-shrinking surfaces in R3 via the torus (2014). Available at arXiv:1111.7318 [math]

  44. Nguyen, X.H.: Construction of complete embedded self-similar surfaces under mean curvature flow, part III. Duke Math. J. 163(11), 2023–2056 (2014)

    MathSciNet  Google Scholar 

  45. Pigati, A.: The viscosity method for min-max free boundary minimal surfaces. Arch. Ration. Mech. Anal. 244(2), 391–441 (2022)

    MathSciNet  Google Scholar 

  46. Pitts, J.T.: Existence and regularity of minimal surfaces on Riemannian manifolds. In: Mathematical Notes, vol. 27. Princeton University Press, Princeton (1981)

  47. Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34(6), 741–797 (1981)

    MathSciNet  Google Scholar 

  48. Sharp, B.: Compactness of minimal hypersurfaces with bounded index. J. Differ. Geom. 106(2), 317–339 (2017)

    MathSciNet  Google Scholar 

  49. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  50. Song, A.: Existence of infinitely many minimal hypersurfaces in closed manifolds. Ann. Math. 197(3), 859–895 (2023)

    MathSciNet  Google Scholar 

  51. Song, A., Zhou, X.: Generic scarring for minimal hypersurfaces along stable hypersurfaces. Geom. Funct. Anal. 31(4), 948–980 (2021)

    MathSciNet  Google Scholar 

  52. Strauss, W.A.: Partial Differential Equations, 2nd edn. Wiley, Chichester (2008)

    Google Scholar 

  53. Wang, Z.: Compactness and generic finiteness for free boundary minimal hypersurfaces (II) (2019). Available at arXiv:1906.08485 [math]

  54. Wang, Z.: Existence of infinitely many free boundary minimal hypersurfaces. J. Differ. Geom. 126(1), 363–399 (2024)

    MathSciNet  Google Scholar 

  55. White, B.: Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals. Invent. Math. 88(2), 243–256 (1987)

    MathSciNet  Google Scholar 

  56. White, B.: The space of minimal submanifolds for varying Riemannian metrics. Indiana Univ. Math. J. 40(1), 161–200 (1991)

    MathSciNet  Google Scholar 

  57. White, B.: On the bumpy metrics theorem for minimal submanifolds. Am. J. Math. 139(4), 1149–1155 (2017)

    MathSciNet  Google Scholar 

  58. White, B.: Generic transversality of minimal submanifolds and generic regularity of two-dimensional area minimizing integral currents (2019). Available at arXiv:1901.05148 [math]

  59. Zhou, X.: Min–max hypersurface in manifold of positive Ricci curvature. J. Differ. Geom. 105(2), 291–343 (2017)

    MathSciNet  Google Scholar 

  60. Zhou, X.: On the multiplicity one conjecture in min–max theory. Ann. Math. 192(3), 767–820 (2020)

    MathSciNet  Google Scholar 

  61. Zhou, X., Zhu, J.J.: Min–max theory for constant mean curvature hypersurfaces. Invent. Math. 218(2), 441–490 (2019)

    MathSciNet  Google Scholar 

  62. Zhou, X., Zhu, J.J.: Existence of hypersurfaces with prescribed mean curvature I-generic min–max. Camb. J. Math. 8(2), 311–362 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Bill Minicozzi for his interest. Part of this work was carried out when Z.W. was a postdoc at Max–Planck Institute for Mathematics in Bonn and he thanks the institute for its hospitality and financial support. X. Z. is partially supported by NSF grant DMS-1811293, DMS-1945178 and an Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Wang.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Removing singularity for weakly stable free boundary h-hypersurfaces

Theorem A.1

(cf. [3, Theorem 27]) Let \((M^{n+1},\partial M,g)\) be a compact Riemannian manifold with boundary of dimension \(3\le (n + 1)\le 7\). Given \(h\in C^\infty (M)\) and \(\Sigma \subset B_\epsilon (p){\setminus }\{p\}\) an almost embedded free boundary h-hypersurface with \(\partial \Sigma \cap \textrm{Int}M\cap B_\epsilon (p){\setminus }\{p\} = \emptyset \), assume that \(\Sigma \) is weakly stable in \(B_\epsilon (p){\setminus }\{p\}\) as in Remark 2.7. If \([\Sigma ]\) represents a varifold of bounded first variation in \(B_\epsilon (p)\), then \(\Sigma \) extends smoothly across p as an almost embedded hypersurface in \(B_\epsilon (p)\).

Proof

Given any sequence of positive \(\lambda _i \rightarrow 0\), consider the blowups \(\{\varvec{\mu }_{p,\lambda _i} (\Sigma ) \subset \varvec{\mu }_{p,\lambda _i} (M)\}\), where \(\varvec{\mu }_{p,\lambda _i} (x) = \frac{x-p}{\lambda _i}\). Since \(\Sigma \) has bounded first variation, \(\varvec{\mu }_{p,\lambda _i} (\Sigma )\) converges (up to a subsequence) to a stationary integral rectifiable cone C in a half Euclidean space \(\mathbb {R}^{n+1}_+ = T_p M\) with free boundary on \(\partial \mathbb {R}^{n+1}_+=T_p(\partial M)\). By weak stability and Theorem 2.9, the convergence is locally smooth and graphical away from the origin, so C is an integer multiple of some embedded minimal hypercone with free boundary. Hence the reflection of C across \(\partial \mathbb {R}^{n+1}_+\) is a stable minimal cone in \(\mathbb {R}^{n+1}{\setminus } \{0\}\), and hence a plane with integer multiplicities. Therefore, we conclude that \(C=m\cdot T_p(\partial M)\) or \(2\,m\cdot P\) for some hyperplane \(P\subset \mathbb {R}^{n+1}_+\) with \(P\perp \partial \mathbb {R}^{n+1}_+\). Here \(m=\Theta ^n(\Sigma ,p)\). Note that P may depend on the choice of \(\{\lambda _i\}\).

If \(C=m\cdot T_p(\partial M)\), then the argument in [60, Theorem B.1] implies the removability of p.

If \(C=2m\cdot P\) for some half-hyperplane P, then by the locally smooth and graphical convergence, there exists \(\sigma _0> 0\) small enough, such that for any \(0 < \sigma \le \sigma _0\), \(\Sigma \) has an m-sheeted, ordered, graphical decomposition in the annulus \(A_{\sigma /2,\sigma }(p) =M\cap B_\sigma (p){\setminus } B_{\sigma /2} (p)\):

$$\begin{aligned}\Sigma \cap A_{\sigma /2,\sigma } (p) = \bigcup _{i=1}^m \Sigma _i(\sigma ).\end{aligned}$$

Here each \(\Sigma _i (\sigma )\) is a graph over \(A_{\sigma /2,\sigma } (p)\cap P\). We can continue each \(\Sigma _i (\sigma )\) all the way to \(B_{\sigma _0}(p){\setminus } \{p\}\), and denote the continuation by \(\Sigma _i\). Then each \(\Sigma _i\) is a free boundary h-hypersurface in \(M\cap B_{\Sigma _0}(p){\setminus } \{p\}\) and \(\Theta ^n(\Sigma _i,p)=1/2\). By the Allard type regularity theorem for rectifiable varifolds with free boundary and bounded mean curvature [19, Theorem 4.13], \(\Sigma _i\) extends as a \(C^{1,\alpha }\) free boundary hypersurface across p for some \(\alpha \in (0,1)\). Higher regularity of \(\Sigma _i\) follows from the prescribing mean curvature equation and elliptic regularity. \(\square \)

Appendix B: The second variation of \(\mathcal {A}^h\) for smooth hypersurfaces

Our goal is to derive the second variation of \({\mathcal {A}}^h\) for arbitrary hypersurfaces with boundary in \((M^{n+1},\partial M,g)\). Note that we always assume \((M^{n+1},\partial M,g)\) is isometrically embedded in some closed \((n+1)\)-dimensional Riemannian manifold \((\widetilde{M},\widetilde{g})\subset \mathbb {R}^L\). Let \((\Sigma ^n,\partial \Sigma )\subset (M,\partial M)\) be an embedded hypersurface in M with boundary on \(\partial M\). We consider a two-parameter family of ambient variations \(\Sigma (t,s)\) of \(\Sigma = \Sigma (0, 0)\) defined by

$$\begin{aligned} \Sigma (t,s)= F_{t,s}(\Sigma ) = \Psi _s\circ \Phi _t(\Sigma ), \end{aligned}$$

where \(\Phi _t\) and \(\Psi _s\) are the flows generated by compactly supported vector fields X and Z in \(\mathbb {R}^L\), respectively. We assume both \(X,Z\in \widetilde{{\mathfrak {X}}}(M,\Sigma )\). Therefore each \(\Sigma (t, s)\) is an embedded hypersurface in \(\widetilde{M}\) with boundary lying on \(\partial M\).

We have

$$\begin{aligned}\frac{\partial F_{t,s}}{\partial t}(x)\Big |_{t=s=0}=X(x),\ \frac{\partial F_{t,s}}{\partial s}(x)\Big |_{t=s=0}=Z(x),\ \text {and } \frac{\partial }{\partial t}\frac{\partial }{\partial s}F_{t,s}(x)\Big |_{t=s=0}=D_XZ(x). \end{aligned}$$

The computation in [3, Appendix A] gives that

$$\begin{aligned}&\frac{\partial }{\partial t}\frac{\partial }{\partial s}\Big |_{t=s=0}\mathcal {H}^n(\Sigma (t,s)) = \frac{\partial }{\partial t}\Big |_{t=0}\int _{\Sigma (t,0)}\textrm{div}Z\,d\mathcal {H}^n\nonumber \\&\quad =\int _{\Sigma }\Big ( \langle \nabla ^\perp (X^\perp ),\nabla ^\perp (Z^{\perp })\rangle -{{\,\textrm{Ric}\,}}(X^\perp ,Z^\perp )-|A|^2\langle X^\perp ,Z^\perp \rangle \Big ) \,d\mathcal {H}^n+\int _{\partial \Sigma }\langle \nabla _{X^\perp } Z^\perp ,\nu _{\partial M}\rangle \,d\mathcal {H}^{n-1} \nonumber \\&\qquad +\,\int _\Sigma \Xi _1(X,Z,\textbf{H})\, d\mathcal {H}^{n} + \int _{\partial \Sigma }\Xi _2(X,Z,\textbf{H},\varvec{\eta },\nu _{\partial M}) \, d\mathcal {H}^{n-1}, \end{aligned}$$
(B.1)

where

$$\begin{aligned} \Xi _1(X,Z,\textbf{H}) =\langle X^\perp ,\textbf{H}\rangle \langle Z^\perp ,\textbf{H}\rangle -\langle \nabla _{X^\perp }(Z^{\perp }),\textbf{H}\rangle -\langle [X^\perp ,Z^\top ],\textbf{H}\rangle , \end{aligned}$$

and

$$\begin{aligned} \Xi _2(X,Z,\textbf{H},\varvec{\eta },\nu _{\partial M})&=\langle \nabla _{X^\perp }Z^\perp ,\varvec{\eta }-\nu _{\partial M}\rangle +\langle [X^\perp ,Z^\top ],\varvec{\eta }\rangle +\textrm{div}_{\Sigma }(Z^\top )\langle X^\top ,\varvec{\eta }\rangle \\&\quad -\langle Z^\perp ,\textbf{H}\rangle \langle X^\top ,\varvec{\eta }\rangle -\langle X^\perp ,\textbf{H}\rangle \langle Z^\top ,\varvec{\eta }\rangle . \end{aligned}$$

Here \(\textbf{H}=-H\nu \) is the mean curvature vector; \(\varvec{\eta }\) is the unit co-normal vector field of \(\Sigma \); \(\nabla \) is the connection on M; \(\perp \) and \(\top \) are the normal and tangential parts on \(\Sigma (t,s)\), respectively.

Let h be a smooth function on \(\widetilde{M}\). Then a direct computation gives that

$$\begin{aligned}&\frac{\partial }{\partial t}\Big |_{t=0}\int _{\Sigma (t,0)}h\langle Z,\nu \rangle \,d\mathcal {H}^{n+1}\nonumber \\&\quad =\int _\Sigma \langle Z,h\nu \rangle \textrm{div} X+\nabla _X\langle Z,h\nu \rangle \, d\mathcal {H}^{n}\nonumber \\&\quad =\int _\Sigma \Big (\langle Z,h\nu \rangle \textrm{div}X^\top - \langle Z,h\nu \rangle \langle \textbf{H},X^\perp \rangle +\nabla _{X^\top }\langle Z,h\nu \rangle +(\nabla _{X^\perp }h)\langle Z,\nu \rangle +h(\nabla _{X^\perp }\langle Z,\nu \rangle )\Big )\,d\mathcal {H}^n\nonumber \\&\quad =\int _{\Sigma }\Big ((\partial _\nu h)\langle X^\perp ,Z^\perp \rangle -\langle X,\textbf{H}\rangle \langle Z,h\nu \rangle + \langle \nabla _{X^\perp }(Z^\perp ),h\nu \rangle \Big )\,d\mathcal {H}^n+\int _{\partial \Sigma }\langle Z^\perp ,h\nu \rangle \langle X^\top ,\varvec{\eta }\rangle \,d\mathcal {H}^{n-1}. \end{aligned}$$
(B.2)

By (B.1) and (B.2), we have

$$\begin{aligned}&\frac{\partial }{\partial t}\Big |_{t=0} \int _{\Sigma (t,0)}\textrm{div}Z-h\langle Z,\nu \rangle \, d\mathcal {H}^n\\&\quad =\int _{\Sigma }\Big ( \langle \nabla ^\perp (X^\perp ),\nabla ^\perp (Z^{\perp })\rangle -{{\,\textrm{Ric}\,}}(X^\perp ,Z^\perp ) -|A|^2\langle X^\perp ,Z^\perp \rangle -(\partial _\nu h)\langle X^\perp ,Z^\perp \rangle \Big )\,d\mathcal {H}^n\\&\qquad +\int _{\partial \Sigma }\langle \nabla _{X^\perp }Z^\perp ,\nu _{\partial M} \rangle \,d\mathcal {H}^{n-1} +\int _\Sigma \widetilde{\Xi }_1(X,Z,\textbf{H}) \, d\mathcal {H}^{n}+\int _{\partial \Sigma }\widetilde{\Xi }_2(X,Z,\textbf{H},\varvec{\eta },\nu _{\partial M})\, d\mathcal {H}^{n-1}, \end{aligned}$$

where

$$\begin{aligned} \widetilde{\Xi }_1(X,Z,\textbf{H})&=\Xi _1(X,Z,\textbf{H})+\langle X^\perp ,\textbf{H}\rangle \langle Z^\perp ,h\nu \rangle - \langle \nabla _{X^\perp }(Z^\perp ),h\nu \rangle \\&=\langle X^\perp ,\textbf{H}\rangle \langle Z^\perp ,\textbf{H}+h\nu \rangle -\langle \nabla _{X^\perp }(Z^{\perp }),\textbf{H}+h\nu \rangle -\langle [X^\perp ,Z^\top ],\textbf{H}\rangle \\&=\langle X^\perp ,\textbf{H}\rangle \langle Z^\perp ,\textbf{H}+h\nu \rangle -\langle \nabla _{X^\perp }(Z^{\perp }),\textbf{H}+h\nu \rangle -A(X^\top ,Z^\top )\langle \nu ,\textbf{H}\rangle , \end{aligned}$$

and

$$\begin{aligned} \widetilde{\Xi }_2(X,Z,\textbf{H},\varvec{\eta },\nu _{\partial M})&=\Xi _2(X,Z,\textbf{H},\varvec{\eta },\nu _{\partial M})- \langle Z^\perp ,h\nu \rangle \langle X^\top ,\varvec{\eta }\rangle \\&=\langle \nabla _{X^\perp }Z^\perp ,\varvec{\eta }-\nu _{\partial M}\rangle +\langle [X^\perp ,Z^\top ],\varvec{\eta }\rangle +\textrm{div}_{\Sigma }(Z^\top )\langle X^\top ,\varvec{\eta }\rangle \\&\quad -\langle Z^\perp ,\textbf{H}+h\nu \rangle \langle X^\top ,\varvec{\eta }\rangle -\langle X^\perp ,\textbf{H}\rangle \langle Z^\top ,\varvec{\eta }\rangle . \end{aligned}$$

In the equality of \(\widetilde{\Xi }_1(X,Z,\textbf{H})\), we used the following identity:

$$\begin{aligned} \langle [X^\perp ,Z^\top ],\nu \rangle&=\langle \nabla _{X^\perp }(Z^\top )-\nabla _{Z^\top }(X^\perp ),\nu \rangle \\&=\langle \nabla _{X}(Z^\top )-\nabla _{X^\top }(Z^\top )-\nabla _{Z^\top }(X^\perp ),\nu \rangle \\&=-\langle Z^\top ,\nabla _{X}\nu \rangle -\langle \nabla _{Z^\top }(X^\perp ),\nu \rangle +A(X^\top ,Z^\top )\\&=\langle Z^\top ,\nabla \langle X,\nu \rangle \rangle -\langle \nabla _{Z^\top }(X^\perp ),\nu \rangle +A(X^\top ,Z^\top )\\&= A(X^\top ,Z^\top ). \end{aligned}$$

We remark that

$$\begin{aligned} |\widetilde{\Xi }_1(X,Z,\textbf{H})|+|\widetilde{\Xi }_2(X,Z,\textbf{H},\varvec{\eta },\nu _{\partial M})| \le C\big (|X|(|\textbf{H}+h\nu |+| \varvec{\eta }-\nu _{\partial M} |+|Z^\top |)+|X^\top |\big ). \end{aligned}$$

Appendix C: Cut-off trick

In this section, we provide a lemma that has been used in Part 3 of the proof of Theorem 2.9 (v). Such a result has also been used in [20].

Lemma C.1

Let \((M^{n+1},\partial M,g)\) be a compact manifold with boundary of dimension \((n+1)\ge 3\). Let \((\Sigma ,\partial \Sigma )\subset (M,\partial M)\) be an almost embedded free boundary h-hypersurface and \(\varphi \) be a smooth function on \(\Sigma \). Then for any \(p\in \Sigma \), there exists a family of cut-off functions \((\xi _r)_{0<r<\epsilon }\) for some \(\epsilon >0\) so that \(\xi _r(p)=0\)

$$\begin{aligned} \textrm{II}_\Sigma (\varphi ,\varphi )=\lim _{r\rightarrow 0}\textrm{II}_\Sigma (\xi _r\varphi ,\xi _r\varphi ). \end{aligned}$$

Proof

Set

$$\begin{aligned} \xi _r(x)=\left\{ \begin{aligned}&0,&|x|<r^2\\&2-\frac{\log |x|}{\log r},&r^2\le |x|\le r\\&1,&|x|>r \end{aligned}\right. , \end{aligned}$$
(C.1)

where \(|x|={\text {dist}}_M(x,p)\). Then we have \(\int _\Sigma |\nabla \xi _r|^2<C(n)/|\log r|\rightarrow 0\) and \(\xi _r\rightarrow 1\) as \(r\rightarrow 0\). Then it suffices to prove \(\int _{\Sigma }|\nabla (\xi _r\varphi )|^2\rightarrow \int _{\Sigma }|\nabla \varphi |^2\) as \(r\rightarrow 0\). This follows from \(\int _\Sigma |\nabla \xi _r|^2\rightarrow 0\) \(\square \)

Appendix D: Local h-foliation with free boundary

The following proposition is a generalization of minimal foliation given by White [55]. This description has already been stated in [54, Proposition A.2].

Proposition D.1

Let \((M^{n+1},\partial M,g)\) be a compact Riemannian manifold with boundary, and let \((\Sigma ,\partial \Sigma )\subset (M,\partial M)\) be an embedded, free boundary minimal hypersurface. Given a point \(p\in \partial \Sigma \), there exist \(\epsilon >0\) and a neighborhood \(U\subset M\) of p such that if \(h:U\rightarrow \mathbb {R}\) is a smooth function with \(\Vert h\Vert _{C^{2,\alpha }}<\epsilon \) and

$$\begin{aligned} w:\Sigma \cap U\rightarrow \mathbb {R} \text { satisfies } \Vert w\Vert _{C^{2,\alpha }}<\epsilon , \end{aligned}$$

then for any \(t\in (-\epsilon ,\epsilon )\), there exists a \(C^{2,\alpha }\)-function \(v_t: U\cap \Sigma \rightarrow \mathbb {R}\), whose graph \(G_t\) meets \(\partial M\) orthogonally along \(U\cap \partial \Sigma \) and satisfies:

$$\begin{aligned} H_{G_t} = h|_{G_t}, \end{aligned}$$

(where \(H_{G_t}\) is evaluated with respect to the upward pointing normal of \(G_t\)), and

$$\begin{aligned} v_t(x) = w(x) + t, \text { if } x\in \partial (U\cap \Sigma )\cap \textrm{Int} M. \end{aligned}$$

Furthermore, \(v_t\) depends on thw in \(C^1\) and the graphs \(\{G_t: t\in [-\epsilon , \epsilon ]\}\) forms a foliation.

Proof

The proof follows from [55, Appendix] together with the free boundary version [3, Section 3]. The only modification is that we need to use the following map to replace \(\Phi \) in [3, Section 3]:

$$\begin{aligned} \Psi : \mathbb {R} \times X \times Y\times Y \times Y \rightarrow Z_1 \times Z_2 \times Z_3. \end{aligned}$$

The map \(\Psi \) is defined by

$$\begin{aligned} \Psi (t,g,h,w,u) = (H_{g(t+ w + u)}-h, g(N_g(t + w + u), \nu _g (t + w + u)), u|_{\Gamma _2} ); \end{aligned}$$

here all the notions are the same as [3, Section 3]. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, A., Wang, Z. & Zhou, X. Multiplicity one for min–max theory in compact manifolds with boundary and its applications. Calc. Var. 63, 70 (2024). https://doi.org/10.1007/s00526-024-02669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02669-w

Mathematics Subject Classification