Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A line search exact penalty method using steering rules

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Line search algorithms for nonlinear programming must include safeguards to enjoy global convergence properties. This paper describes an exact penalization approach that extends the class of problems that can be solved with line search sequential quadratic programming methods. In the new algorithm, the penalty parameter is adjusted at every iteration to ensure sufficient progress in linear feasibility and to promote acceptance of the step. A trust region is used to assist in the determination of the penalty parameter, but not in the step computation. It is shown that the algorithm enjoys favorable global convergence properties. Numerical experiments illustrate the behavior of the algorithm on various difficult situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achtziger W., Kanzow C. (2008) Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114(1): 69–99

    Article  MathSciNet  MATH  Google Scholar 

  2. Anitescu M. (2005) Global convergence of an elastic mode approach for a class of mathematical programs with complementarity constraints. SIAM J. Optim. 16(1): 120–145

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson H.Y., Sen A., Shanno D.F., Vanderbei R.J. (2006) Interior-point algorithms, penalty methods and equilibrium problems. Comput. Optim. Appl. 34(2): 155–182

    Article  MathSciNet  MATH  Google Scholar 

  4. Borwein J.M., Lewis A.S. (2000) Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York

    MATH  Google Scholar 

  5. Burke J.V., Han S.P. (1989) A robust sequential quadratic-programming method. Math. Program. 43(3): 277–303

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrd R.H., Gould N.I.M., Nocedal J., Waltz R.A. (2004) An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Math. Program. Ser. B 100(1): 27–48

    MathSciNet  MATH  Google Scholar 

  7. Byrd R.H., Gould N.I.M., Nocedal J., Waltz R.A. (2006) On the convergence of successive linear-quadratic programming algorithms. SIAM J. Optim. 16(2): 471–489

    Article  MathSciNet  Google Scholar 

  8. Byrd R.H., Nocedal J., Waltz R.A (2008) Steering exact penalty methods. Optim. Methods Softw. 23(2): 197–213

    Article  MathSciNet  MATH  Google Scholar 

  9. Byrd R.H., Nocedal J., Waltz R.A. (2006) KNITRO: An integrated package for nonlinear optimization. In: di Pillo G., Roma M. (eds) Large-Scale Nonlinear Optimization. Springer, New York, pp 35–59

    Chapter  Google Scholar 

  10. Chen L., Goldfarb D. (2006) Interior-point ℓ2 penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108(1): 1–36

    Article  MathSciNet  MATH  Google Scholar 

  11. De Miguel A.V., Friedlander M.P., Nogales F.J., Scholtes S. (2005) A two-sided relaxation scheme for mathematical programs with equilibriums constraints. SIAM J. Optim. 16(1): 587–609

    Article  MathSciNet  Google Scholar 

  12. Ferris M.C., Pang J.S. (1997) Engineering and economic applications of complementarity problems. SIAM Rev. 39(4): 669–713

    Article  MathSciNet  MATH  Google Scholar 

  13. Fletcher R. (1987) Practical Methods of Optimization, 2nd edn. Wiley, Chichester, England

    MATH  Google Scholar 

  14. Fletcher, R., Leyffer, S.: User manual for filter SQP. Technical Report NA/181, Dundee, Scotland (1998)

  15. Fletcher R., Leyffer S. (2002) Nonlinear programming without a penalty function. Math. Programm. 91: 239–269

    Article  MathSciNet  MATH  Google Scholar 

  16. Fletcher R., Leyffer S., Ralph D., Scholtes S. (2006) Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17(1): 259–286

    Article  MathSciNet  MATH  Google Scholar 

  17. Fletcher R., Leyffer S., Toint Ph. L. (2002) On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13(1): 44–59

    Article  MathSciNet  MATH  Google Scholar 

  18. Gill P.E., Murray W., Saunders M.A. (2002) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12: 979–1006

    Article  MathSciNet  MATH  Google Scholar 

  19. Gill P.E., Murray W., Wright M.H. (1981) Practical Optimization. Academic Press, London

    MATH  Google Scholar 

  20. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: global convergence. Technical Report RAL-TR-2009-001, Rutherford Appleton Laboratory (2009)

  21. Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: local convergence. Technical Report RAL-TR-2009-002, Rutherford Appleton Laboratory (2009)

  22. Han S.P., Mangasarian O.L. (1979) Exact penalty functions in nonlinear programming. Math. Program. 17(1): 251–269

    Article  MathSciNet  MATH  Google Scholar 

  23. Leyffer S., López-Calva G., Nocedal J. (2006) Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17(1): 52–77

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu X., Sun J. (2004) Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints. Math. Program. 101(1): 231–261

    Article  MathSciNet  MATH  Google Scholar 

  25. López-Calva, G.: Exact-Penalty Methods for Nonlinear Programming. PhD thesis, Industrial Engineering & Management Sciences, Northwestern University, Evanston, IL, USA (2005)

  26. Mangasarian O.L., Fromovitz S. (1967) The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17: 37–47

    Article  MathSciNet  MATH  Google Scholar 

  27. Nocedal J., Wright S.J. (2006) Numerical Optimization. Springer Series in Operations Research, 2nd edn. Springer, New York

    Google Scholar 

  28. Raghunathan A., Biegler L.T. (2005) An interior point method for mathematical programs with complementarity constraints (MPCCs). SIAM J. Optim. 15(3): 720–750

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruszczynski A. (2006) Nonlinear Optimization. Princeton University Press, New Jersey

    MATH  Google Scholar 

  30. Wächter A., Biegler L.T. (2000) Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Program. 88(3): 565–574

    Article  MathSciNet  MATH  Google Scholar 

  31. Waltz, R.A., Plantenga, T.D.: Knitro 5.0 User’s Manual. Technical report, Ziena Optimization, Inc., Evanston, IL, USA, February 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Nocedal.

Additional information

Richard H. Byrd was supported by National Science Foundation grant CMMI 0728190.

Gabriel Lopez-Calva was supported by Department of Energy grant DE-FG02-87ER25047-A004.

Jorge Nocedal was supported by National Science Foundation grant DMS-0810213.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrd, R.H., Lopez-Calva, G. & Nocedal, J. A line search exact penalty method using steering rules. Math. Program. 133, 39–73 (2012). https://doi.org/10.1007/s10107-010-0408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0408-0

Mathematics Subject Classification (2000)