Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An optimal task scheduling method in IoT-Fog-Cloud network using multi-objective moth-flame algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Nowadays, cloud and fog computing have been leveraged to enhance Internet of Things (IoT) performance. The outstanding potential of cloud platforms accelerates the processing and storage of aggregated big data from IoT equipment. Emerging fog-based schemes can improve service quality to IoT applications and mitigate excessive delays and security challenges. Also, since energy consumption can directly cause CO2 emissions from fog and cloud nodes, an efficient task scheduling method reduces energy consumption. In this regard, the growing need for an efficient task scheduling mechanism considering the optimal management of IoT resources is increasingly felt. IoT's task scheduling based on fog-cloud computing plays a crucial role in responding to users' requests. Optimal task scheduling can improve system performance. Therefore, this study uses an IoT task request scheduling method on resources by the Multi-Objective Moth-Flame Optimization (MOMFO) algorithm. It enhances the quality of IoT services based on fog-cloud computing to reduce task requests' completion and system throughput times and energy consumption. If energy consumption is diminished, the percentage of CO2 emissions is also reduced. Then, the proposed scheduling method to solve the task scheduling problem is evaluated using the datasets. A comparison between the proposed scheme and Particle Swarm Optimization (PSO), Firefly Algorithm (FA), Salp Swarm Algorithms (SSA), Harris Hawks Optimizer (HHO), and Artificial Bee Colony (ABC) is performed to assess the performance. According to experiments, the proposed solution has reduced the completion time of IoT tasks and throughput time, thus cutting down the delay due to the processing of tasks, energy consumption, and CO2 emissions and increasing the system's performance rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is available from the authors upon reasonable request.

References

  1. Nižetić S et al (2020) Internet of Things (IoT): opportunities, issues and challenges towards a smart and sustainable future. J Clean Prod 274:122877. https://doi.org/10.1016/j.jclepro.2020.122877

    Article  Google Scholar 

  2. Sinha BB, Dhanalakshmi R (2022) Recent advancements and challenges of internet of things in smart agriculture: a survey. Futur Gener Comput Syst 126:169–184. https://doi.org/10.1016/j.future.2021.08.006

    Article  Google Scholar 

  3. Seyfollahi A, Ghaffari A (2021) A review of intrusion detection systems in RPL routing protocol based on machine learning for internet of things applications. Wirel Commun Mob Comput 2021:8414503. https://doi.org/10.1155/2021/8414503

    Article  Google Scholar 

  4. Varjovi AE, Babaie S (2020) Green Internet of Things (GIoT): vision, applications and research challenges. Sustain Comput: Inform Syst 28:100448. https://doi.org/10.1016/j.suscom.2020.100448

    Article  Google Scholar 

  5. Fadi A-T, Deebak BD (2020) Seamless authentication: for IoT-big data technologies in smart industrial application systems. IEEE Trans Industr Inf 17(4):2919–2927. https://doi.org/10.1109/TII.2020.2990741

    Article  Google Scholar 

  6. Cai H et al (2016) IoT-based big data storage systems in cloud computing: perspectives and challenges. IEEE Internet Things J 4(1):75–87. https://doi.org/10.1109/JIOT.2016.2619369

    Article  MathSciNet  Google Scholar 

  7. Cerchecci M et al (2018) A low power IoT sensor node architecture for waste management within smart cities context. Sensors 18(4):1282. https://doi.org/10.3390/s18041282

    Article  Google Scholar 

  8. Sood SK, Mahajan I (2017) Wearable IoT sensor based healthcare system for identifying and controlling chikungunya virus. Comput Ind 91:33–44. https://doi.org/10.1016/j.compind.2017.05.006

    Article  Google Scholar 

  9. Lin JC-W et al (2021) Scalable mining of high-utility sequential patterns with three-tier MapReduce model. ACM Trans Knowl Discov Data 16(3):1–26. https://doi.org/10.1145/3487046

    Article  Google Scholar 

  10. Boudi A et al (2019) Assessing lightweight virtualization for security-as-a-service at the network edge. IEICE Trans Commun 102(5):970–977. https://doi.org/10.1587/transcom.2018EUI0001

    Article  Google Scholar 

  11. Boyes H et al (2018) The industrial internet of things (IIoT): an analysis framework. Comput Ind 101:1–12. https://doi.org/10.1016/j.compind.2018.04.015

    Article  Google Scholar 

  12. Zhou X et al (2019) Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT. Futur Gener Comput Syst 93:278–289. https://doi.org/10.1016/j.future.2018.10.046

    Article  Google Scholar 

  13. Mutlag AA et al (2019) Enabling technologies for fog computing in healthcare IoT systems. Futur Gener Comput Syst 90:62–78. https://doi.org/10.1016/j.future.2018.07.049

    Article  Google Scholar 

  14. Radomirovic S (2010) Towards a model for security and privacy in the internet of things. In: Proc. First Int’l Workshop on Security of the Internet of Things, p 6. [Online]. Available: https://www.nics.uma.es/pub/seciot10/files/pdf/radomirovic_seciot10_paper.pdf. [Online]. Available: https://www.nics.uma.es/pub/seciot10/files/pdf/radomirovic_seciot10_paper.pdf

  15. Ray PP (2018) A survey on internet of things architectures. J King Saud Univ-Comput Inf Sci 30(3):291–319. https://doi.org/10.1016/j.jksuci.2016.10.003

    Article  Google Scholar 

  16. Bonomi F et al (2014) Fog computing: a platform for internet of things and analytics. In: Big data and internet of things: a roadmap for smart environments. Springer, pp 169–186

  17. Bonomi F et al (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp 13–16. https://doi.org/10.1145/2342509.2342513

  18. Taami T et al (2019) Experimental characterization of latency in distributed iot systems with cloud fog offloading. In: 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE, pp 1–4. https://doi.org/10.1109/WFCS.2019.8757960

  19. Buyya R, Dastjerdi AV (2016) Internet of things: principles and paradigms. Elsevier, Cambridge

    Google Scholar 

  20. O. C. A. W. Group (2017) OpenFog reference architecture for fog computing. OPFRA001, vol 20817, pp 162

  21. Laroui M et al (2021) Edge and fog computing for IoT: a survey on current research activities & future directions. Comput Commun. https://doi.org/10.1016/j.comcom.2021.09.003

    Article  Google Scholar 

  22. Yi S et al (2015) A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 workshop on mobile big data, pp 37–42. https://doi.org/10.1145/2757384.2757397

  23. Yin L et al (2018) Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing. IEEE Trans Industr Inf 14(10):4712–4721. https://doi.org/10.1109/TII.2018.2851241

    Article  Google Scholar 

  24. Abdel-Basset M et al (2020) Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications. IEEE Trans Industr Inf 17(7):5068–5076. https://doi.org/10.1109/TII.2020.3001067

    Article  Google Scholar 

  25. Sun Y et al (2018) Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II. Wirel Pers Commun 102(2):1369–1385. https://doi.org/10.1007/s11277-017-5200-5

    Article  Google Scholar 

  26. Gu Y, Budati C (2020) Energy-aware workflow scheduling and optimization in clouds using bat algorithm. Futur Gener Comput Syst 113:106–112. https://doi.org/10.1016/j.future.2020.06.031

    Article  Google Scholar 

  27. Cao F, Zhu MM (2013) Energy-aware workflow job scheduling for green clouds. In: 2013 IEEE international conference on green computing and communications and IEEE internet of things and IEEE cyber, physical and social computing. IEEE, pp 232–239. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.58

  28. Garg SK et al (2009) Energy-efficient scheduling of HPC applications in cloud computing environments. arXiv preprint arXiv:0909.1146

  29. Rimol M Gartner predicts hyperscalers’ carbon emissions will drive cloud purchase decisions by 2025. Gertner. https://www.gartner.com/en/newsroom/press-releases/2022-01-24-gartner-predicts-hyperscalers-carbon-emissions-will-drive-cloud-purchase-decsions-by-2025. Accessed 24 Jan 2022

  30. AbdElaziz M et al (2021) Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments. Future Gener Comput Syst 124:142–154. https://doi.org/10.1016/j.future.2021.05.026

    Article  Google Scholar 

  31. Alworafi MA et al (2019) An enhanced task scheduling in cloud computing based on hybrid approach. In: Data analytics and learning. Springer, pp 11–25

  32. Shao Y et al (2021) Multi-objective neural evolutionary algorithm for combinatorial optimization problems. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3105937

    Article  Google Scholar 

  33. Ahmed U et al (2021) A load balance multi-scheduling model for OpenCL kernel tasks in an integrated cluster. Soft Comput 25(1):407–420. https://doi.org/10.1007/s00500-020-05152-8

    Article  Google Scholar 

  34. Pham X-Q et al (2017) A cost-and performance-effective approach for task scheduling based on collaboration between cloud and fog computing. Int J Distrib Sensor Netw 13(11):1550147717742073. https://doi.org/10.1177/1550147717742073

    Article  Google Scholar 

  35. Gawali MB, Shinde SK (2018) Task scheduling and resource allocation in cloud computing using a heuristic approach. J Cloud Comput 7(1):1–16. https://doi.org/10.1186/s13677-018-0105-8

    Article  Google Scholar 

  36. Boveiri HR (2016) A novel ACO-based static task scheduling approach for multiprocessor environments. Int J Comput Intell Syst 9(5):800–811. https://doi.org/10.1080/18756891.2016.1237181

    Article  Google Scholar 

  37. Kashikolaei SMG et al (2020) An enhancement of task scheduling in cloud computing based on imperialist competitive algorithm and firefly algorithm. J Supercomput 76(8):6302–6329. https://doi.org/10.1007/s11227-019-02816-7

    Article  Google Scholar 

  38. AbdElaziz M et al (2019) Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution. Knowl-Based Syst 169:39–52. https://doi.org/10.1016/j.knosys.2019.01.023

    Article  Google Scholar 

  39. Srichandan S et al (2018) Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm. Future Comput Inf J 3(2):210–230. https://doi.org/10.1016/j.fcij.2018.03.004

    Article  Google Scholar 

  40. Ma X et al (2019) An IoT-based task scheduling optimization scheme considering the deadline and cost-aware scientific workflow for cloud computing. EURASIP J Wirel Commun Netw 2019(1):1–19. https://doi.org/10.1186/s13638-019-1557-3

    Article  Google Scholar 

  41. Mansouri N et al (2019) Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory. Comput Ind Eng 130:597–633. https://doi.org/10.1016/j.cie.2019.03.006

    Article  Google Scholar 

  42. Lawrence T et al (2021) Particle swarm optimization for automatically evolving convolutional neural networks for image classification. IEEE Access 9:14369–14386. https://doi.org/10.1109/ACCESS.2021.3052489

    Article  Google Scholar 

  43. Wang J, Li D (2019) Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors 19(5):1023. https://doi.org/10.3390/s19051023

    Article  Google Scholar 

  44. Bitam S et al (2018) Fog computing job scheduling optimization based on bees swarm. Enterp Inf Syst 12(4):373–397. https://doi.org/10.1080/17517575.2017.1304579

    Article  Google Scholar 

  45. Rugwiro U et al (2019) Task scheduling and resource allocation based on ant-colony optimization and deep reinforcement learning. J Internet Technol 20(5):1463–1475

    Google Scholar 

  46. Bian S et al (2019) Online task scheduling for fog computing with multi-resource fairness. In: 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). IEEE, pp 1–5. https://doi.org/10.1109/VTCFall.2019.8891573

  47. Tong Z et al (2020) A scheduling scheme in the cloud computing environment using deep Q-learning. Inf Sci 512:1170–1191. https://doi.org/10.1016/j.ins.2019.10.035

    Article  Google Scholar 

  48. Kyriakides G, Margaritis K (2022) Evolving graph convolutional networks for neural architecture search. Neural Comput Appl:1–11. https://doi.org/10.1007/s00521-021-05979-8

  49. Chen Z et al (2020) Computation offloading and task scheduling for DNN-based applications in cloud-edge computing. IEEE Access 8:115537–115547. https://doi.org/10.1109/ACCESS.2020.3004509

    Article  Google Scholar 

  50. Karim ME et al (2021) BHyPreC: a novel Bi-LSTM based hybrid recurrent neural network model to predict the CPU workload of cloud virtual machine. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3113714

    Article  Google Scholar 

  51. Jena R (2017) Energy efficient task scheduling in cloud environment. Energy Procedia 141:222–227. https://doi.org/10.1016/j.egypro.2017.11.096

    Article  Google Scholar 

  52. Pandiyan S et al (2020) A performance-aware dynamic scheduling algorithm for cloud-based IoT applications. Comput Commun 160:512–520. https://doi.org/10.1016/j.comcom.2020.06.016

    Article  Google Scholar 

  53. Deebak BD et al (2020) IoT-BSFCAN: a smart context-aware system in IoT-cloud using mobile-fogging. Futur Gener Comput Syst 109:368–381. https://doi.org/10.1016/j.future.2020.03.050

    Article  Google Scholar 

  54. Shekhar S et al (2020) URMILA: dynamically trading-off fog and edge resources for performance and mobility-aware IoT services. J Syst Archit 107:101710. https://doi.org/10.1016/j.sysarc.2020.101710

    Article  Google Scholar 

  55. Shukri SE et al (2021) Enhanced multi-verse optimizer for task scheduling in cloud computing environments. Expert Syst Appl 168:114230. https://doi.org/10.1016/j.eswa.2020.114230

    Article  Google Scholar 

  56. Abed-Alguni BH, Alawad NA (2021) Distributed grey wolf optimizer for scheduling of workflow applications in cloud environments. Appl Soft Comput 102:107113. https://doi.org/10.1016/j.asoc.2021.107113

    Article  Google Scholar 

  57. Alboaneen D et al (2021) A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers. Futur Gener Comput Syst 115:201–212. https://doi.org/10.1016/j.future.2020.08.036

    Article  Google Scholar 

  58. Ahmed OH et al (2021) Using differential evolution and Moth-Flame optimization for scientific workflow scheduling in fog computing. Appl Soft Comput 112:107744. https://doi.org/10.1016/j.asoc.2021.107744

    Article  Google Scholar 

  59. Shabbir M et al (2021) Enhancing security of health information using modular encryption standard in mobile cloud computing. IEEE Access 9:8820–8834. https://doi.org/10.1109/ACCESS.2021.3049564

    Article  Google Scholar 

  60. Ahmed U et al (2022) Reliable customer analysis using federated learning and exploring deep-attention edge intelligence. Futur Gener Comput Syst 127:70–79. https://doi.org/10.1016/j.future.2021.08.028

    Article  Google Scholar 

  61. Liu Q et al (2023) An optimal scheduling method in IoT-fog-cloud network using combination of aquila optimizer and african vultures optimization. Processes 11(4):1162. https://doi.org/10.3390/pr11041162

    Article  Google Scholar 

  62. Qiao L, Naderi S, Ahmadi M, Mirjalili S (2022) A workflow scheduling in cloud environment using a combination of moth-flame and salp swarm algorithms. SSRN Electron J. 10:44. https://doi.org/10.2139/ssrn.4216421

    Article  Google Scholar 

  63. Lin JC-W et al (2022) Adaptive particle swarm optimization model for resource leveling. Evolv Syst:1–12. https://doi.org/10.1007/s12530-022-09420-w

  64. Salehnia T, Fathi A (2021) Fault tolerance in LWT-SVD based image watermarking systems using three module redundancy technique. Expert Syst Appl 179:115058. https://doi.org/10.1016/j.eswa.2021.115058

    Article  Google Scholar 

  65. Raziani S et al (2021) Selecting of the best features for the knn classification method by Harris Hawk algorithm. In: Proceedings of the 8th international conference on new strategies in engineering, information science and technology in the next century

  66. Tian J et al (2022) Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems. Complex Intel Syst:1–49. https://doi.org/10.1007/s40747-022-00910-7

  67. Xu X et al (2022) Multi-objective robust optimisation model for MDVRPLS in refined oil distribution. Int J Prod Res 60(22):6772–6792. https://doi.org/10.1080/00207543.2021.1887534

    Article  Google Scholar 

  68. Li B et al (2021) A distributionally robust optimization based method for stochastic model predictive control. IEEE Trans Autom Control 67(11):5762–5776. https://doi.org/10.1109/TAC.2021.3124750

    Article  MathSciNet  Google Scholar 

  69. Li X, Sun Y (2020) Stock intelligent investment strategy based on support vector machine parameter optimization algorithm. Neural Comput Appl 32:1765–1775. https://doi.org/10.1007/s00521-019-04566-2

    Article  Google Scholar 

  70. Li X, Sun Y (2021) Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Comput Appl 33:8227–8235. https://doi.org/10.1007/s00521-020-04958-9

    Article  Google Scholar 

  71. C. Lu et al. (2023) An improved iterated greedy algorithm for the distributed hybrid flowshop scheduling problem. Eng Optim:1–19. https://doi.org/10.1080/0305215X.2023.2198768

  72. Lu C et al (2023) Human-robot collaborative scheduling in energy-efficient welding shop. IEEE Trans Industr Inform. https://doi.org/10.1109/TII.2023.3271749

    Article  Google Scholar 

  73. Zhao Z et al (2022) Performance analysis of the hybrid satellite-terrestrial relay network with opportunistic scheduling over generalized fading channels. IEEE Trans Veh Technol 71(3):2914–2924. https://doi.org/10.1109/TVT.2021.3139885

    Article  Google Scholar 

  74. Xiao Z et al (2022) Multi-objective parallel task offloading and content caching in D2D-aided MEC networks. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2022.3199876

    Article  Google Scholar 

  75. Dai X et al (2022) Task co-offloading for d2d-assisted mobile edge computing in industrial internet of things. IEEE Trans Industr Inf 19(1):480–490. https://doi.org/10.1109/TII.2022.3158974

    Article  Google Scholar 

  76. Dai X et al (2022) Task offloading for cloud-assisted fog computing with dynamic service caching in enterprise management systems. IEEE Trans Industr Inf 19(1):662–672. https://doi.org/10.1109/TII.2022.3186641

    Article  Google Scholar 

  77. Wang Y et al (2023) MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wirel Netw 29(1):47–68. https://doi.org/10.1007/s11276-022-03099-2

    Article  Google Scholar 

  78. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  79. Seyfollahi A et al (2022) MFO-RPL: a secure RPL-based routing protocol utilizing moth-flame optimizer for the IoT applications. Comput Standards Interfaces 82:103622. https://doi.org/10.1016/j.csi.2022.103622

    Article  Google Scholar 

  80. Shukla DK et al (2021) Task scheduling to reduce energy consumption and makespan of cloud computing using NSGA-II. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.11.556

    Article  Google Scholar 

  81. Sampaio AM et al (2015) PIASA: a power and interference aware resource management strategy for heterogeneous workloads in cloud data centers. Simul Model Pract Theory 57:142–160. https://doi.org/10.1016/j.simpat.2015.07.002

    Article  Google Scholar 

  82. Parallel workloads archive. https://www.cs.huji.ac.il/labs/parallel/workload/logs.html. Accessed July 2020

  83. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer …, [Online]. Available: https://abc.erciyes.edu.tr/pub/tr06_2005.pdf

  84. Zhang, P., Chen, N., Kumar, N., Abualigah, L., Guizani, M., Duan, Y., ... & Wu, S. (2023). Energy allocation for vehicle-to-grid settings: a low-cost proposal combining DRL and VNE. IEEE transactions on sustainable computing.

  85. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, pp 169–178. https://doi.org/10.1007/978-3-642-04944-6_14

  86. Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  87. Abualigah L, Hanandeh ES, Zitar RA, Thanh CL, Khatir S, Gandomi AH (2023) Revolutionizing sustainable supply chain management: A review of metaheuristics. Eng Appl Artif Intell 126:106839

  88. Madni SHH et al (2017) Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. Clust Comput 20(3):2489–2533. https://doi.org/10.1007/s10586-016-0684-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taybeh Salehnia or Laith Abualigah.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehnia, T., Seyfollahi, A., Raziani, S. et al. An optimal task scheduling method in IoT-Fog-Cloud network using multi-objective moth-flame algorithm. Multimed Tools Appl 83, 34351–34372 (2024). https://doi.org/10.1007/s11042-023-16971-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16971-w

Keywords