Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

General high-order solitons and breathers with a periodic wave background in the nonlocal Hirota–Maccari equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Soliton and breather solutions to the nonlocal Hirota–Maccari equation with a periodic wave background are constructed via the KP hierarchy reduction approach. By constraining tau functions of bilinear equations in the KP hierarchy, we obtain general 2N-line solitons and N-breather solutions with a periodic wave background. What needs to be emphasized are the two-soliton can be divided into non-degenerate and degenerate soliton according to the asymptotic analysis. Meanwhile, one- and two-breather solutions in a periodic wave and constant background are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(PT\) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Yang, J.: General \(N\)-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Rev. E 383, 328 (2019)

    CAS  Google Scholar 

  3. Wen, Z., Yan, Z.: Solitons and their stability in the nonlocal nonlinear Schrödinger equation with \(PT\)-symmetric potentials. Chaos 27, 053105 (2017)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  4. Hanif, Y., Saleem, U.: Broken and unbroken \(PT\)-symmetric solutions of semi-discrete nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 98, 233–244 (2019)

    Article  Google Scholar 

  5. Zhang, Y., Qiu, D., Cheng, Y., He, J.: Rational solution of the nonlocal nonlinear Schrödinger equation and its application in optics. Rom. J. Phys. 61(3), 108 (2017)

    Google Scholar 

  6. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  ADS  PubMed  Google Scholar 

  7. Liu, W., Zheng, X., Li, X.: Bright and dark soliton solutions to the partial reverse space-time nonlocal Mel’nikov equation. Nonlinear Dyn. 94, 2177–2189 (2018)

    Article  Google Scholar 

  8. Rao, J., He, J., Mihalache, D., Cheng, Y.: Dynamics of lump-soliton solutions to the \(PT\)-symmetric nonlocal Fokas system. Wave Motion 101, 102685 (2021)

    Article  MathSciNet  Google Scholar 

  9. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Rao, J., Cheng, Y., He, J.: Rational and semirational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    Article  MathSciNet  Google Scholar 

  11. Yang, B., Chen, Y.: Dynamics of rogue waves in the partially \(PT\)-symmetric nonlocal Davey–Stewartson systems. Commun. Nonlinear Sci. Numer. Simul. 69, 287–303 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Liu, Y., Mihalache, D., He, J.: Families of rational solutions of the \(y\)-nonlocal Davey–Stewartson II equation. Nonlinear Dyn. 90, 2445 (2017)

    Article  MathSciNet  Google Scholar 

  13. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  14. Wu, J.: Riemann–Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 107, 1127–1139 (2022)

    Article  Google Scholar 

  15. Ohta, Y., Yang, J.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86(3), 036604 (2012)

    Article  ADS  Google Scholar 

  16. Ohta, Y., Wang, D., Yang, J.: General \(N\)-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127(4), 345–371 (2011)

    Article  MathSciNet  Google Scholar 

  17. Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A: Math. Theor. 46(10), 105202 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yang, X., Zhang,Y., Li, W.: Dynamics of rational and lump-soliton solutions to the reverse space-time nonlocal Hirota–Maccari system. Rom. J. Phys. (to appear)

  19. Yang, B., Yang, J.: Transformations between nonlocal and local integrable equations. Stud. Appl. Math. 140(2), 178–201 (2018)

    Article  MathSciNet  Google Scholar 

  20. Maccari, A.: A generalized Hirota equation in \((2+1)\) dimensions. J. Math. Phys. 39, 6547–6551 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wazwaz, A.M.: Abundant soliton and periodic wave solutions for the coupled Higgs field equation, the Maccari system and the Hirota–Maccari system. Phys. Scripta 85, 065011 (2012)

    Article  ADS  Google Scholar 

  22. Demiray, S.T., Pandir, Y., Bulut, H.: All exact travellingwave solutions of Hirota equation and Hirota-Maccari system. Optik 127, 1848–1859 (2016)

    Article  ADS  Google Scholar 

  23. Shi, C.Y., Fu, H.M., Wu, C.F.: Soliton solutions to the reverse-time nonlocal Davey–Stewartson III equation. Wave Motion 104, 102744 (2021)

    Article  MathSciNet  Google Scholar 

  24. Yu, X., Gao, Y.T., Sun, Z.Y.: \(N\)-soliton solutions for the \((2+1)\)-dimensional Hirota–Maccari equation in fluids, plasmas and optical fibers. J. Math. Anal. Appl. 378, 519–527 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wang, R., Zhang, Y., Chen, X., et al.: The rational and semi-rational solutions to the Hirota–Maccari system. Nonlinear Dyn. 100(3), 2767–2778 (2020)

    Article  Google Scholar 

  26. Xia, P., Zhang, Y., Zhang, H., et al.: Some novel dynamical behaviours of localized solitary waves for the Hirota–Maccari system. Nonlinear Dyn. 108, 533–541 (2022)

    Article  Google Scholar 

  27. Zhou, T., Tian, B., Shen, Y., Gao, X.: Auto-Bäcklund transformations and soliton solutions on the nonzero background for a \((3+1)\)-dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schif equation in a fluid. Nonlinear Dyn. 111, 8647–8658 (2023)

    Article  Google Scholar 

  28. Rao, J., He, J., Mihalache, D., Cheng, Y.: \(PT\)-symmetric nonlocal Dave–Stewartson I equation: general lump-soliton solutions on a background of periodic line waves. Appl. Math. Lett. 104, 106246 (2020)

    Article  MathSciNet  Google Scholar 

  29. Jiang, D., Zha, Q.: Breathers and higher order rogue waves on the double-periodic background for the nonlocal Gerdjikov–Ivanov equation. Nonlinear Dyn. 111, 10459–10472 (2023)

    Article  Google Scholar 

  30. Liu, Y., Li, B.: Dynamics of solitons and breathers on a periodic waves background in the nonlocal Mel’nikov equation. Nonlinear Dyn. 100, 3717–3731 (2020)

    Article  Google Scholar 

  31. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  32. Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. North-Holland Math. Stud. 81, 259–271 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371326, 11975145 and 12271488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the research effort and the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this part, we will prove the Theorem (2.1) and Theorem (3.1). Firstly, we utilize the variable transformations

$$\begin{aligned} u=\frac{g}{f}, \quad u^*(-x,y,-t)=\frac{h}{f},\quad r=-2i(\ln f)_{xy},\nonumber \\ \end{aligned}$$
(25)

to convert the Eq. (2) into the bilinear equation

$$\begin{aligned} \begin{aligned}&(D_t-iD_xD_y+\beta D_x^3+\beta D_x)g\cdot f=0,\\&(3D_x^2+1)f\cdot f=gh. \end{aligned} \end{aligned}$$
(26)

Taking reduction condition

$$\begin{aligned} (\partial _x-\partial _s)f=cf, \end{aligned}$$
(27)

the \((3 + 1)\) dimensional system of Eq. (1) can be obtained

$$\begin{aligned} \begin{aligned}&(D_t-iD_xD_y+\beta D_x^3+\beta D_x)g\cdot f=0,\\&(3D_xD_s+1)f\cdot f=gh, \end{aligned} \end{aligned}$$
(28)

under the nonlocal condition

$$\begin{aligned} f(x,y,t)g^*(-x,y,-t)=f^*(-x,y,-t)h(x,y,t),\nonumber \\ \end{aligned}$$
(29)

where c is constant, g, h are complex-valued functions, and f is a real-valued function.

Based on the Sato theory [31, 32], the bilinear equations in the KP hierarchy

$$\begin{aligned} \begin{aligned}&(D_{x_1}^3+3D_{x_1}D_{x_2}-4D_{x_3})\tau _{n+1}\tau _n=0,\\&(D_{x_1}D_{x_{-1}}-2)\tau _n\tau _n=-2\tau _{n+1}\tau _{n-1}, \end{aligned} \end{aligned}$$
(30)

exist the determinant

$$\begin{aligned} \tau _n=\mathop {det}\limits _{1\le i,j\le N}(m_{ij}^{(n)}), \end{aligned}$$
(31)

where

$$\begin{aligned} \begin{aligned}&m_{ij}^{(n)}=\widetilde{c_i}\delta _{ij}+\frac{p_i+s_i}{p_i+q_j}\left( \frac{-p_i}{q_j}\right) ^ne^{\xi _i+\eta _j},\\&\xi _i=\frac{1}{p_i}x_{-1}+p_ix_1+p_i^2x_2+p_i^3x_3+\xi _{0,i},\\&\eta _j=\frac{1}{q_j}x_{-1}+q_jx_1-q_j^2x_2+q_j^3x_3+\eta _{0,j}. \end{aligned} \end{aligned}$$
(32)

In order to obtain periodic solutions, we employ the independent variables \(x_1=\frac{1}{\sqrt{6}}x\), \(x_2=\frac{1}{2}i\beta y\), \(x_3=-\frac{\sqrt{6}}{9}\beta t-\frac{\sqrt{6}}{9}x\), then the Eq. (31) can rewrite

$$\begin{aligned} \tau _n=\prod _{i=1}^{N}(p_i+s_i)e^{\zeta _i}\mathop {det}\limits _{1\le i,j\le N}(\widehat{m_{ij}^{(n)}}), \end{aligned}$$
(33)

where

$$\begin{aligned} \widehat{m_{ij}^{(n)}}=\widetilde{c_i}\delta _{ij}e^{-\zeta _i}\frac{1}{p_i+s_i}+\frac{1}{p_i+q_j}(-\frac{p_i}{q_j})^n, \end{aligned}$$
(34)

with

$$\begin{aligned} \begin{aligned} \zeta _i&=\xi _i+\eta _i\\&=\frac{1}{\sqrt{6}}(p_i+q_j)x+\frac{i}{2}\beta (p_i^2-q_j^2)y\\ {}&\quad -\frac{\sqrt{6}}{9}(\beta t+x)(p_i^3+q_j^3)+\chi _{0,i}. \end{aligned} \end{aligned}$$
(35)

To yield soliton solutions, we consider \(M=2N+1\) in Eq. (31) and restrict the parameters obeying the following conditions

$$\begin{aligned} \begin{aligned}&s_j=-p_j+1,\quad p_{M+i}=-p_i,\quad q_{M+i}=-q_i,\quad q_i=p_i^*,\\&q_{2M+1}\!=\!-p_{2M+1}^*,\quad \widetilde{c_j}\!=\!b_j,\quad c_{M+i}\!=\!-c_i^*,\quad \widetilde{c_{2M+1}}\!=\!ic_{2M+1}, \end{aligned}\nonumber \\ \end{aligned}$$
(36)

then one can obtain

$$\begin{aligned} \begin{aligned} \chi _{2M+1}^*(-x,y,-t)&=\chi _{2M+1}(x,y,t),\\ \chi _{M+i}^*(-x,y,-t)&=\chi _i(x,y,t), \end{aligned} \end{aligned}$$
(37)

and derive

$$\begin{aligned} \begin{aligned} \widehat{m_{M+i,j}^{*(n)}}(-x,y,-t)&=-c_i^*\delta _{M+i,j}e^{-\chi _i}\\&\quad -\frac{1}{p_i^*+p_{M+j}} \left( -\frac{p_{M+j}}{p_i^*}\right) ^{-n}\\&=-\widehat{m_{i,M+j}}^{(-n)}(x,y,t), \end{aligned}\nonumber \\ \end{aligned}$$
(38)

which implies

$$\begin{aligned} \tau _n^*(-x,y,-t)=(-1)^{3N}\tau _{-n}(x,y,t). \end{aligned}$$
(39)

As a result, Eq. (30) can be reduced to the bilinear Eqs. (28) with \(f=\tau _0, g=\tau _1, h=\tau _{-1}\).

To generate breathers to Eq. (1), we select several variable transformations

$$\begin{aligned}{} & {} x_{-1}=-\frac{1}{\sqrt{6}}is, \qquad x_1=\frac{1}{\sqrt{6}}ix, \qquad x_2=-\frac{1}{2}i\beta y, \nonumber \\{} & {} \qquad x_3=-i\frac{\sqrt{6}}{9}\beta t-i\frac{\sqrt{6}}{9}x, \end{aligned}$$
(40)

then the tau function becomes

$$\begin{aligned} \tau _n=\prod _{i=1}^{N}(p_i+s_i)e^{\chi _i}\mathop {det}\limits _{1\le i,j\le N}(\overline{m_{i,j}^{(n)}}), \end{aligned}$$
(41)

where \(\overline{m_{i,j}^{(n)}}\) is given by

$$\begin{aligned}{} & {} \overline{m_{ij}^{(n)}}=\frac{\widetilde{c_i}\delta _{ij}}{(p_i+s_i)e^{\xi _i+\eta _j}}\nonumber \\{} & {} \quad +\frac{1}{p_i+q_j}\left( -\frac{p_i}{q_j}\right) ^n,\nonumber \\{} & {} \chi _i=\xi _i+\eta _i=\frac{1}{\sqrt{6}}(p_i+p_i^*)ix-\frac{1}{2}i\beta (p_i^2-p_i^{*2})y\nonumber \\{} & {} \quad -\frac{\sqrt{6}}{9}i(p_i^3+p_i^{*3})(\beta t+x)+\chi _i^0. \end{aligned}$$
(42)

When the parameters satisfy \(\widetilde{c_{i,j}}=1, s_j=q_j, q_j=p_j^*\), one could conclude that \(\chi _i^*(-x,y,-t)=\chi _i(x,y,t)\). In this case, we further derive

$$\begin{aligned} \overline{m_{j,i}^{*(-n)}}(x,y,t)= & {} \overline{m_{i,j}^{*(n)}}(-x,y,-t),\nonumber \\{} & {} \tau _n^*(-x,y,-t)=\tau _{-n}(x,y,t). \end{aligned}$$
(43)

Additionally, determining \(f=\tau _0, g=\tau _1, h=\tau _{-1}\) and letting

$$\begin{aligned} p_i=\frac{\omega _i}{2}+i\lambda _i,\qquad q_i=\frac{\omega _i}{2}-i\lambda _i, \end{aligned}$$
(44)

solutions for the breather are discovered.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, Y. & Li, W. General high-order solitons and breathers with a periodic wave background in the nonlocal Hirota–Maccari equation. Nonlinear Dyn 112, 4803–4813 (2024). https://doi.org/10.1007/s11071-023-09257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09257-1

Keywords