Abstract
The study of the theory of operators over modal pseudocomplemented De Morgan algebras was begun in papers [20] and [21]. In this paper, we introduce and study the class of modal pseudocomplemented De Morgan algebras enriched by a k-periodic automorphism (or \({\mathcal {C}}_k\)-algebras). We denote by \(\lnot _k\) the automorphism where k is a positive integer. For \(k=2\), the class coincides with the one studied in [20] where the automorphism works as a new unary operator which can be considered as a negation. In the first place, we develop an algebraic study of the class of \({\mathcal {C}}_k\)-algebras; as consequence, we prove the class \({\mathcal {C}}_k\)-algebras is a semisimple variety and determine the generating algebras. After doing the algebraic study and using these properties, we built two families of sentential logics that we denote with \(\mathbb {L}_{k}^{\le }\) and \(\mathbb {L}_{k}\) for every k. \(\mathbb {L}_{k}\) is a 1-assertional logic and \(\mathbb {L}_{k}^{\le }\) is the degree-preserving logic both associated with the class of \({\mathcal {C}}_k\)-algebras. Working over these logics, we prove that \(\mathbb {L}_{k}^{\le }\) is paraconsistent with respect to the de Morgan negation \(\sim \), which is protoalgebraic and finitely equivalential but not algebraizable. In contrast, we prove that \(\mathbb {L}_{k}\) is algebraizable, sharing the same theorems with \(\mathbb {L}_{k}^{\le }\), but not paraconsistent with respect to \(\sim \). Furthermore, we show that \(\mathbb {L}_{k}^{\le }\) and \(\mathbb {L}_{k}\) are paracomplete logics with respect to \(\sim \) and \(\lnot _k\) and paraconsistent logics with respecto to \(\lnot _k\), for every k.
Similar content being viewed by others
References
Abad, M., J. P. Díaz Varela, B. F. López Martinolich, M. C. Vannicola, and M. Zander, An equivalence between varieties of cyclic post algebras and varieties generated by a finite field, Central European Journal of Mathematics 4: 547–561, 2006.
Balbes, R., and P. Dwinger, Distributive lattices. University of Missouri Press, Columbia, 1974.
Béziau, J.-Y., Two Genuine 3-Valued Paraconsistent Logics, in S. Akama, (ed.), Towards Paraconsistent Emgineering, Springer International Publishing, Cham, 2016. pp. 35–47.
Blok, W., and D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society 77: 396, 1989.
Bou, F., F. Esteva, J. M. Font, A. Gil, L. Godo, A. Torrens, and V. Verdú, Logics preserving degrees of truth from varieties of residuated lattices, Journal of Logic and Computation 19(6): 1031–1069, 2009.
Burris, S., and H. Sankappanavar, A course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1981.
Cantú, L., and M. Figallo, On the logic that preserves degrees of truth associated to involutive Stone algebras, Logic Journal of the IGPL 28(5): 1000–1020, 2020.
Carnielli, W., and J. Marcos, A taxonomy of C-systems, in W.A. Carnielli, (ed.), Paraconsistency. The Logical Way to the Inconsistent, vol. 228 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 2002, pp. 1–94.
Carnielli, W., and M. Coniglio, Paraconsistent logic: consistency, contradiction and negation, vol. 40 of Logic, Epistemology, and the Unity of Science, Springer International Publishing, Basel, Switzerland.
Carnielli, W., and A. Rodrigues, An epistemic approach to paraconsistency: a logic of evidence and truth, Synthese 196: 3789-3813, 2019.
Castiglioni, J., and R. Ertola-Biraben, Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation, Logic Journal of the IGPL 22: 268–273, 2014.
Cignoli, R., and M. S. de Gallego, Dualities for some De Morgan algebras with operators and Łukasiewicz algebras, Journal of the Australian Mathematical Society (Series A), 34: 377–393, 1983.
Coniglio, M., and M. Figallo, Hilbert-style presentations of two logics associated to tetravalent modal algebras, Studia Logica 102(3): 525–539, 2014.
Czelakowski, J., and R. Jansana, Weakly algebraizable logics, The Journal of Symbolic Logic 65: 641–668, 2000.
Díaz Varela, J., and B. López Martinolich, Resolution of algebraic systems of equations in the variety of cyclic post algebras, Studia Logica 98: 307–330, 2011.
Ertola, R., F. Esteva, T. Flaminio, L. Godo, and C. Noguera, Paraconsistency properties in degree-preserving fuzzy logics, Soft Computing 19(3): 531–546, 2015.
Esteva, F., A. Figallo-Orellano, T. Flaminio and L. Godo, Logics of formal inconsistency based on distributive involutive residuated lattices, Journal of Logic and Computation 31(5): 1226–1265, 2021.
Esteva, F., A. Figallo-Orellano, T. Flaminio and L. Godo, Some categorical equivalences for Nelson algebras with consistency operators, in Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP), Atlantis Press, 2021, pp. 420–426.
Figallo-Orellano, A., and J. Slagter, Monteiro’s algebraic notion of maximal consistent theory for Tarskian logics. Submitted.
Figallo-Orellano, A., A. Ziliani, and M. Figallo, Symmetric operators on modal pseudocomplemented De Morgan algebras, Logic journal of the IGPL 25(4): 496–511, 2017.
Figallo-Orellano, A., and I. Pascual, On monadic operators over modal pseudocomplemented De Morgan algebras and tetravalent modal algebras, Studia Logica 107: 591–611, 2019.
Figallo, A. V., Tópicos sobre álgebras modales $4-$valuadas, in Proceeding of the IX Simposio Latino-Americano de Lógica Matemática, vol. 39 of Notas de Lógica Matemática, 1992, pp. 145–157.
Figallo, A. V., N. Oliva, and A. Ziliani, Modal pseudocomplemented de Morgan algebras, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53(1): 65–79, 2014.
Figallo, A. V., N. Oliva, and A. Ziliani, Free modal pseudocomplemented de Morgan algebras, Bulletin of the Section of Logic 47(2): 89–106, 2018.
Figallo, A. V., G. Pelaitay, and J. Sarmiento, $C_n$ algebras with Moisil possibility operators, Logic Journal of the IGPL 28(6): 1141–1154, 2020.
Figallo, M., Hypersequents and tetravalent modal logic ${{\cal{TML}}}$. Ph.D. Thesis, Universidad Nacional del Sur, 2013.
Figallo, M., Cut-free sequent calculus and natural deduction for the tetravalent modal logic, Studia Logica 109: 1347–1373, 2021.
Font, J. M., Abstract algebraic logic - textbook, vol. 60 of Studies in Logic - Mathematical Logic and Foundations, College Publications, London, 2016.
Font, J. M., and R. Jansana, A general algebraic semantics for sentential logics, 2nd edition, vol. 7 of Lecture notes in logic, Association for Symbolic Logic, 2009.
Font, J. M., and M. Rius, An abstract algebraic logic approach to tetravalent modal logics, Journal of Symbolic Logic 65: 481–518, 2000.
Font, J. M., On substructural logics preserving degrees of truth, Bulletin of the Section of Logic 36: 117–130, 2007.
Font, J. M., Taking degrees of truth seriously, Studia Logica (Special issue on Truth Values, Part I) 91: 383–406, 2009.
Font, J. M., A. Gil, A. Torrens, and V. Verdú, On the infinite-valued Lukasiewicz logic that preserves degrees of truth, Archive for Mathematical Logic 45: 839–868, 2006.
Jansana, R., Selfextensional logics with a conjunction, Studia Logica 84: 63–104, 2006.
López-Martinolich, B. F., Resolución de sistemas de ecuaciones polinomiales sobre álgebras de Post k-cíclicas, Ph. D. Thesis, Universidad Nacional del Sur, 2011.
López-Martinolich, B. F., Gróbner bases over cyclic post algebras. algebras, 2012 IEEE 42nd International Symposium on Multiple-Valued Logic, Victoria, BC, Canada, 2012, pp. 197–202.
Marcos, J., Nearly every normal modal logic is paranormal, Logique et Analyse 48: 279-300, 2005.
Marcelino, S., and U. Rivieccio, Logics of involutive stone algebras, Soft Computing 65: 871 2022.
Monteiro, A., Sur les algèbres de Heyting Symétriques, Portugaliae Mathematica 39: 1–237, 1980.
Osorio, M., A. Figallo-Orellano, and M. Pérez-Gaspar, A family of genuine and non-algebraisable C-systems, Journal of Applied Non-Classical Logics 31(1): 56–84, 2021.
Rasiowa, H., An Algebraic Approach to Non-Classical Logics, vol. 78 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam and London, and American Elsevier Publishing Company, Inc., New York, 1974.
Sankappanavar, H., Pseudocomplemented Ockham and de Morgan algebras, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32: 385–394, 1986.
Szmuc, D., Defining LFIs and LFUs in extensions of infectious logics, Journal of Applied Non-Classical Logics 26(4): 286–314, 2016.
Acknowledgements
Figallo-Orellano acknowledges the support of a fellowship grant 2016/21928-0 from São Paulo Research Foundation (FAPESP), Brazil. Pérez-Gaspar was financially supported by a postdoctoral fellow grant from Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico. This work was partially supported by UNAMPAPIIT IA105420.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Presented by Jacek Malinowski
Rights and permissions
About this article
Cite this article
Figallo-Orellano, A., Peréz-Gaspar, M. & Ramírez-Contreras, J.M. Paraconsistent and Paracomplete Logics Based on k-Cyclic Modal Pseudocomplemented De Morgan Algebras. Stud Logica 110, 1291–1325 (2022). https://doi.org/10.1007/s11225-022-10004-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-022-10004-7