Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Paraconsistent and Paracomplete Logics Based on k-Cyclic Modal Pseudocomplemented De Morgan Algebras

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The study of the theory of operators over modal pseudocomplemented De Morgan algebras was begun in papers [20] and [21]. In this paper, we introduce and study the class of modal pseudocomplemented De Morgan algebras enriched by a k-periodic automorphism (or \({\mathcal {C}}_k\)-algebras). We denote by \(\lnot _k\) the automorphism where k is a positive integer. For \(k=2\), the class coincides with the one studied in [20] where the automorphism works as a new unary operator which can be considered as a negation. In the first place, we develop an algebraic study of the class of \({\mathcal {C}}_k\)-algebras; as consequence, we prove the class \({\mathcal {C}}_k\)-algebras is a semisimple variety and determine the generating algebras. After doing the algebraic study and using these properties, we built two families of sentential logics that we denote with \(\mathbb {L}_{k}^{\le }\) and \(\mathbb {L}_{k}\) for every k. \(\mathbb {L}_{k}\) is a 1-assertional logic and \(\mathbb {L}_{k}^{\le }\) is the degree-preserving logic both associated with the class of \({\mathcal {C}}_k\)-algebras. Working over these logics, we prove that \(\mathbb {L}_{k}^{\le }\) is paraconsistent with respect to the de Morgan negation \(\sim \), which is protoalgebraic and finitely equivalential but not algebraizable. In contrast, we prove that \(\mathbb {L}_{k}\) is algebraizable, sharing the same theorems with \(\mathbb {L}_{k}^{\le }\), but not paraconsistent with respect to \(\sim \). Furthermore, we show that \(\mathbb {L}_{k}^{\le }\) and \(\mathbb {L}_{k}\) are paracomplete logics with respect to \(\sim \) and \(\lnot _k\) and paraconsistent logics with respecto to \(\lnot _k\), for every k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad, M., J. P. Díaz Varela, B. F. López Martinolich, M. C. Vannicola, and M. Zander, An equivalence between varieties of cyclic post algebras and varieties generated by a finite field, Central European Journal of Mathematics 4: 547–561, 2006.

  2. Balbes, R., and P. Dwinger, Distributive lattices. University of Missouri Press, Columbia, 1974.

    Google Scholar 

  3. Béziau, J.-Y., Two Genuine 3-Valued Paraconsistent Logics, in S. Akama, (ed.), Towards Paraconsistent Emgineering, Springer International Publishing, Cham, 2016. pp. 35–47.

  4. Blok, W., and D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society 77: 396, 1989.

    Article  Google Scholar 

  5. Bou, F., F. Esteva, J. M. Font, A. Gil, L. Godo, A. Torrens, and V. Verdú, Logics preserving degrees of truth from varieties of residuated lattices, Journal of Logic and Computation 19(6): 1031–1069, 2009.

    Article  Google Scholar 

  6. Burris, S., and H. Sankappanavar, A course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1981.

  7. Cantú, L., and M. Figallo, On the logic that preserves degrees of truth associated to involutive Stone algebras, Logic Journal of the IGPL 28(5): 1000–1020, 2020.

    Article  Google Scholar 

  8. Carnielli, W., and J. Marcos, A taxonomy of C-systems, in W.A. Carnielli, (ed.), Paraconsistency. The Logical Way to the Inconsistent, vol. 228 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 2002, pp. 1–94.

  9. Carnielli, W., and M. Coniglio, Paraconsistent logic: consistency, contradiction and negation, vol. 40 of Logic, Epistemology, and the Unity of Science, Springer International Publishing, Basel, Switzerland.

  10. Carnielli, W., and A. Rodrigues, An epistemic approach to paraconsistency: a logic of evidence and truth, Synthese 196: 3789-3813, 2019.

    Article  Google Scholar 

  11. Castiglioni, J., and R. Ertola-Biraben, Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation, Logic Journal of the IGPL 22: 268–273, 2014.

    Article  Google Scholar 

  12. Cignoli, R., and M. S. de Gallego, Dualities for some De Morgan algebras with operators and Łukasiewicz algebras, Journal of the Australian Mathematical Society (Series A), 34: 377–393, 1983.

    Article  Google Scholar 

  13. Coniglio, M., and M. Figallo, Hilbert-style presentations of two logics associated to tetravalent modal algebras, Studia Logica 102(3): 525–539, 2014.

    Article  Google Scholar 

  14. Czelakowski, J., and R. Jansana, Weakly algebraizable logics, The Journal of Symbolic Logic 65: 641–668, 2000.

    Article  Google Scholar 

  15. Díaz Varela, J., and B. López Martinolich, Resolution of algebraic systems of equations in the variety of cyclic post algebras, Studia Logica 98: 307–330, 2011.

    Google Scholar 

  16. Ertola, R., F. Esteva, T. Flaminio, L. Godo, and C. Noguera, Paraconsistency properties in degree-preserving fuzzy logics, Soft Computing 19(3): 531–546, 2015.

    Article  Google Scholar 

  17. Esteva, F., A. Figallo-Orellano, T. Flaminio and L. Godo, Logics of formal inconsistency based on distributive involutive residuated lattices, Journal of Logic and Computation 31(5): 1226–1265, 2021.

    Article  Google Scholar 

  18. Esteva, F., A. Figallo-Orellano, T. Flaminio and L. Godo, Some categorical equivalences for Nelson algebras with consistency operators, in Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP), Atlantis Press, 2021, pp. 420–426.

  19. Figallo-Orellano, A., and J. Slagter, Monteiro’s algebraic notion of maximal consistent theory for Tarskian logics. Submitted.

  20. Figallo-Orellano, A., A. Ziliani, and M. Figallo, Symmetric operators on modal pseudocomplemented De Morgan algebras, Logic journal of the IGPL 25(4): 496–511, 2017.

    Article  Google Scholar 

  21. Figallo-Orellano, A., and I. Pascual, On monadic operators over modal pseudocomplemented De Morgan algebras and tetravalent modal algebras, Studia Logica 107: 591–611, 2019.

    Article  Google Scholar 

  22. Figallo, A. V., Tópicos sobre álgebras modales $4-$valuadas, in Proceeding of the IX Simposio Latino-Americano de Lógica Matemática, vol. 39 of Notas de Lógica Matemática, 1992, pp. 145–157.

  23. Figallo, A. V., N. Oliva, and A. Ziliani, Modal pseudocomplemented de Morgan algebras, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53(1): 65–79, 2014.

    Google Scholar 

  24. Figallo, A. V., N. Oliva, and A. Ziliani, Free modal pseudocomplemented de Morgan algebras, Bulletin of the Section of Logic 47(2): 89–106, 2018.

  25. Figallo, A. V., G. Pelaitay, and J. Sarmiento, $C_n$ algebras with Moisil possibility operators, Logic Journal of the IGPL 28(6): 1141–1154, 2020.

  26. Figallo, M., Hypersequents and tetravalent modal logic ${{\cal{TML}}}$. Ph.D. Thesis, Universidad Nacional del Sur, 2013.

  27. Figallo, M., Cut-free sequent calculus and natural deduction for the tetravalent modal logic, Studia Logica 109: 1347–1373, 2021.

    Article  Google Scholar 

  28. Font, J. M., Abstract algebraic logic - textbook, vol. 60 of Studies in Logic - Mathematical Logic and Foundations, College Publications, London, 2016.

  29. Font, J. M., and R. Jansana, A general algebraic semantics for sentential logics, 2nd edition, vol. 7 of Lecture notes in logic, Association for Symbolic Logic, 2009.

  30. Font, J. M., and M. Rius, An abstract algebraic logic approach to tetravalent modal logics, Journal of Symbolic Logic 65: 481–518, 2000.

    Article  Google Scholar 

  31. Font, J. M., On substructural logics preserving degrees of truth, Bulletin of the Section of Logic 36: 117–130, 2007.

    Google Scholar 

  32. Font, J. M., Taking degrees of truth seriously, Studia Logica (Special issue on Truth Values, Part I) 91: 383–406, 2009.

    Google Scholar 

  33. Font, J. M., A. Gil, A. Torrens, and V. Verdú, On the infinite-valued Lukasiewicz logic that preserves degrees of truth, Archive for Mathematical Logic 45: 839–868, 2006.

    Article  Google Scholar 

  34. Jansana, R., Selfextensional logics with a conjunction, Studia Logica 84: 63–104, 2006.

    Article  Google Scholar 

  35. López-Martinolich, B. F., Resolución de sistemas de ecuaciones polinomiales sobre álgebras de Post k-cíclicas, Ph. D. Thesis, Universidad Nacional del Sur, 2011.

  36. López-Martinolich, B. F., Gróbner bases over cyclic post algebras. algebras, 2012 IEEE 42nd International Symposium on Multiple-Valued Logic, Victoria, BC, Canada, 2012, pp. 197–202.

  37. Marcos, J., Nearly every normal modal logic is paranormal, Logique et Analyse 48: 279-300, 2005.

    Google Scholar 

  38. Marcelino, S., and U. Rivieccio, Logics of involutive stone algebras, Soft Computing 65: 871 2022.

    Google Scholar 

  39. Monteiro, A., Sur les algèbres de Heyting Symétriques, Portugaliae Mathematica 39: 1–237, 1980.

    Google Scholar 

  40. Osorio, M., A. Figallo-Orellano, and M. Pérez-Gaspar, A family of genuine and non-algebraisable C-systems, Journal of Applied Non-Classical Logics 31(1): 56–84, 2021.

    Article  Google Scholar 

  41. Rasiowa, H., An Algebraic Approach to Non-Classical Logics, vol. 78 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam and London, and American Elsevier Publishing Company, Inc., New York, 1974.

  42. Sankappanavar, H., Pseudocomplemented Ockham and de Morgan algebras, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32: 385–394, 1986.

    Article  Google Scholar 

  43. Szmuc, D., Defining LFIs and LFUs in extensions of infectious logics, Journal of Applied Non-Classical Logics 26(4): 286–314, 2016.

    Article  Google Scholar 

Download references

Acknowledgements

Figallo-Orellano acknowledges the support of a fellowship grant 2016/21928-0 from São Paulo Research Foundation (FAPESP), Brazil. Pérez-Gaspar was financially supported by a postdoctoral fellow grant from Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico. This work was partially supported by UNAMPAPIIT IA105420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Figallo-Orellano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Jacek Malinowski

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figallo-Orellano, A., Peréz-Gaspar, M. & Ramírez-Contreras, J.M. Paraconsistent and Paracomplete Logics Based on k-Cyclic Modal Pseudocomplemented De Morgan Algebras. Stud Logica 110, 1291–1325 (2022). https://doi.org/10.1007/s11225-022-10004-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-022-10004-7

Keywords