Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Regulation of pseudographitic carbon domain to boost sodium energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hard carbon anode has shown extraordinary potentials for sodium-ion batteries (SIBs) owing to the cost-effectiveness and advantaged microstructure. Nevertheless, the widespread application of hard carbon is still hindered by the insufficient sodium storage capacity and depressed rate property, which are mainly induced by the undesirable pseudographitic structure. Herein, we develop a molten-salt-mediated strategy to regulate the pseudographitic structure of hard carbon with suitable interlayer spacing and enlarged pseudographitic domain, which is conducive to the intercalation capacity and diffusion kinetics of sodium ions. Impressively, the optimized hard carbon anode delivers a high reversible capacity of 320 mAh·g−1, along with superior rate property (138 mAh·g−1 at 2 A·g−1) and stable cyclability over 1800 cycles. Moreover, the in situ Raman spectroscopic study and full-cell assembly further investigate the sodium storage mechanism and practical implement of obtained hard carbon. This work pioneers a low-cost and effective route to regulate the pseudographitic structure of hard carbon materials for advanced SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsh, H. S.; Li, Y. X.; Tan, D. H. S.; Zhang, M. H.; Zhao, E. Y.; Meng, Y. S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274.

    Article  CAS  Google Scholar 

  2. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithiumion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    Article  CAS  Google Scholar 

  3. Bashir, T.; Zhou, S. W.; Yang, S. Q.; Ismail, S. A.; Ali, T.; Wang, H.; Zhao, J. Q.; Gao, L. J. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev. 2023, 6, 5.

    Article  CAS  Google Scholar 

  4. Sun, N.; Qiu, J. S.; Xu, B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate. Adv. Energy Mater. 2022, 12, 2200715.

    Article  CAS  Google Scholar 

  5. Hao, Y. C.; Shao, J. W.; Yuan, Y. F.; Li, X. F.; Xiao, W.; Sari, H. M. K.; Liu, T. F.; Lu, J. Design of phosphide anodes harvesting superior sodium storage: Progress, challenges, and perspectives. Adv. Funct. Mater. 2023, 33, 2212692.

    Article  CAS  Google Scholar 

  6. Qiao, S. Y.; Zhou, Q. W.; Ma, M.; Liu, H. K.; Dou, S. X.; Chong, S. K. Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 2023, 17, 11220–11252.

    Article  CAS  PubMed  Google Scholar 

  7. Xu, Z. L.; Park, J.; Yoon, G.; Kim, H.; Kang, K. Graphitic carbon materials for advanced sodium-ion batteries. Small Methods 2019, 3, 1800227.

    Article  CAS  Google Scholar 

  8. Shao, W. L.; Shi, H. D.; Jian, X. G.; Wu, Z. S.; Hu, F. Y. Hard-carbon anodes for sodium-ion batteries: Recent status and challenging perspectives. Adv. Energy Sustain. Res. 2022, 3, 2200009.

    Article  CAS  Google Scholar 

  9. Zhang, M. H.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode. Nano Energy 2021, 82, 105738.

    Article  CAS  Google Scholar 

  10. Wang, N. N.; Wang, Y. X.; Xu, X.; Liao, T.; Du, Y.; Bai, Z. C.; Dou, S. X. Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 9353–9361.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, C. L.; Wang, D. K.; Li, A.; Pan, E. Z.; Liu, H. Y.; Chen, X. H.; Jia, M. Q.; Song, H. H. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem. Eng. J. 2020, 380, 122457.

    Article  CAS  Google Scholar 

  12. Yan, J.; Li, H. M.; Wang, K. L.; Jin, Q. Z.; Lai, C. L.; Wang, R. X.; Cao, S. L.; Han, J.; Zhang, Z. C.; Su, J. Z. et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy Mater. 2021, 11, 2003911.

    Article  CAS  Google Scholar 

  13. He, L. L.; Sun, W.; Sun, K. N.; Mao, Y. Q.; Deng, T. T.; Fang, L.; Wang, Z. H.; Chen, S. L. Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as highperformance anode materials for superior sodium storage. J. Power Sources 2022, 526, 231019.

    Article  CAS  Google Scholar 

  14. Zheng, Y.; Ni, X. P.; Li, K. M.; Yu, X. H.; Song, H.; Chen, S.; Khan, N. A.; Wang, D.; Zhang, C. Multi-heteroatom- doped hollow carbon nanocages from ZIF-8@CTP nanocomposites as high-performance anodes for sodium-ion batteries. Compos. Commun. 2022, 32, 101116.

    Article  Google Scholar 

  15. Chen, L.; Bai, L. L.; Yeo, J.; Wei, T.; Chen, W. S.; Fan, Z. J. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage. ACS Appl. Mater. Interfaces 2020, 12, 27499–27507.

    Article  CAS  PubMed  Google Scholar 

  16. Or, T.; Gourley, S. W. D.; Kaliyappan, K.; Zheng, Y.; Li, M.; Chen, Z. W. Recent progress in surface coatings for sodium-ion battery electrode materials. Electrochem. Energy Rev. 2022, 5, 20.

    Article  CAS  PubMed Central  Google Scholar 

  17. Chen, H.; Sun, N.; Wang, Y. X.; Soomro, R. A.; Xu, B. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Stor. Mater. 2023, 56, 532–541.

    Google Scholar 

  18. Lu, Z. X.; Wang, J.; Feng, W. L.; Yin, X. P.; Feng, X. C.; Zhao, S. Y.; Li, C. X.; Wang, R. X.; Huang, Q. A.; Zhao, Y. F. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 2023, 35, 2211461.

    Article  CAS  Google Scholar 

  19. Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO- template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem., Int. Ed. 2021, 60, 5114–5120.

    Article  CAS  Google Scholar 

  20. Hou, Z. D.; Lei, D.; Jiang, M. W.; Gao, Y. Y.; Zhang, X.; Zhang, Y.; Wang, J. G. Biomass- derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage. ACS Appl. Mater. Interfaces 2023, 15, 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  21. Lu, Y. X.; Zhao, C. L.; Qi, X. G.; Qi, Y. R.; Li, H.; Huang, X. J.; Chen, L. Q.; Hu, Y. S. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy Mater. 2018, 8, 1800108.

    Article  Google Scholar 

  22. Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial Coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

    Article  Google Scholar 

  23. Liu, J. L.; Zhang, Y. Q.; Zhang, L.; Xie, F. X.; Vasileff, A.; Qiao, S. Z. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 2019, 31, 1901261.

    Article  Google Scholar 

  24. Chen, D. Q.; Zhang, W.; Luo, K. Y.; Song, Y.; Zhong, Y. J.; Liu, Y. X.; Wang, G. K.; Zhong, B. H.; Wu, Z. G.; Guo, X. D. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 2021, 14, 2244–2262.

    Article  CAS  Google Scholar 

  25. Deng, X.; Shi, W. X.; Zhong, Y. J.; Zhou, W.; Liu, M. L.; Shao, Z. P. Facile strategy to low-cost synthesis of hierarchically porous, active carbon of high graphitization for energy storage. ACS Appl. Mater. Interfaces 2018, 10, 21573–21581.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, N.; Liu, Q. L.; Sun, B. Y.; Gu, J. J.; Yu, B. X.; Zhang, W.; Zhang, D. N- doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Sci. Rep. 2018, 8, 9934.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Z. H.; Song, L. J.; Cheng, L. S.; Tan, J.; Yang, W. M. Accelerated graphitization of pan-based carbon fibers: K+-effected graphitization via laser irradiation. ACS Sustain. Chem. Eng. 2022, 10, 8086–8093.

    Article  CAS  Google Scholar 

  28. Lv, S.; Ma, L. Y.; Shen, X. Y.; Tong, H. Potassium chloride-catalyzed growth of porous carbon nanotubes for high-performance supercapacitors. J. Alloys Compd. 2022, 906, 164242.

    Article  CAS  Google Scholar 

  29. Li, P. Y.; Xie, H. Y.; Liu, Y. L.; Wang, J.; Xie, Y.; Hu, W. R.; Xie, T. H.; Wang, Y. B.; Zhang, Y. K. Molten salt and air induced nitrogen-containing graphitic hierarchical porous biocarbon nanosheets derived from kitchen waste hydrolysis residue for energy storage. J. Power Sources 2019, 439, 227096.

    Article  CAS  Google Scholar 

  30. Zhao, J. H.; He, X. X.; Lai, W. H.; Yang, Z.; Liu, X. H.; Li, L.; Qiao, Y.; Xiao, Y.; Li, L.; Wu, X. Q. et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy Mater. 2023, 13, 2300444.

    Article  CAS  Google Scholar 

  31. Lu, Q.; Tian, H. Y.; Hu, B.; Jiang, X. Y.; Dong, C. Q.; Yang, Y. P. Pyrolysis mechanism of holocellulose-based monosaccharides: The formation of hydroxyacetaldehyde. J. Anal. Appl. Pyrolysis 2016, 120, 15–26.

    Article  CAS  Google Scholar 

  32. Paine III, J. B.; Pithawalla, Y. B.; Naworal, J. D. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 2. The pyrolysis of D-glucose: General disconnective analysis and the formation of C1 and C2 carbonyl compounds by electrocyclic fragmentation mechanisms. J. Anal. Appl. Pyrolysis 2008, 82, 10–41.

    Article  CAS  Google Scholar 

  33. Paine III, J. B.; Pithawalla, Y. B.; Naworal, J. D. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3. The Pyrolysis of D-glucose: Formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms. J. Anal. Appl. Pyrolysis 2008, 82, 42–69.

    Article  CAS  Google Scholar 

  34. Chen, H.; Sun, N.; Zhu, Q. Z.; Soomro, R. A.; Xu, B. Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries. Adv. Sci. 2022, 9, 2200023.

    Article  CAS  Google Scholar 

  35. Zhong, L.; Zhang, W. L.; Sun, S. R.; Zhao, L.; Jian, W. B.; He, X.; Xing, Z. Y.; Shi, Z. X.; Chen, Y. N.; Alshareef, H. N. et al. Engineering of the crystalline lattice of hard carbon anodes toward practical potassium-ion batteries. Adv. Funct. Mater. 2023, 33, 2211872.

    Article  CAS  Google Scholar 

  36. Lu, H. Y.; Ai, F. X.; Jia, Y. L.; Tang, C. Y.; Zhang, X. H.; Huang, Y. H.; Yang, H. X.; Cao, Y. L. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small 2018, 14, 1802694.

    Article  Google Scholar 

  37. Zhang, T.; Mao, J.; Liu, X. L.; Xuan, M. J.; Bi, K.; Zhang, X. L.; Hu, J. H.; Fan, J. J.; Chen, S. M.; Shao, G. S. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv. 2017, 7, 41504–41511.

    Article  CAS  Google Scholar 

  38. Liu, H. L.; Liu, H.; Di, S. L.; Zhai, B. Y.; Li, L.; Wang, S. L. Advantageous tubular structure of biomass-derived carbon for high-performance sodium storage. ACS Appl. Energy Mater. 2021, 4, 4955–4965.

    Article  CAS  Google Scholar 

  39. Li, Y. M.; Hu, Y. S.; Titirici, M. M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

    Article  Google Scholar 

  40. Dong, R. Q.; Wu, F.; Bai, Y.; Li, Q. H.; Yu, X. Q.; Li, Y.; Ni, Q.; Wu, C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater. Adv. 2022, 2022, 9896218.

    Article  Google Scholar 

  41. Hou, Z. D.; Liu, H. Y.; Chen, P. P.; Wang, J. G. Nanocaging silicon nanoparticles into a porous carbon framework toward enhanced lithium-ion storage. Part. Part. Syst. Charact. 2021, 38, 2100107.

    Article  CAS  Google Scholar 

  42. Wu, D. Y.; Sun, F.; Qu, Z. B.; Wang, H.; Lou, Z. J.; Wu, B.; Zhao, G. B. Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 2022, 10, 17225–17236.

    Article  CAS  Google Scholar 

  43. Chen, C.; Huang, Y.; Meng, Z. Y.; Zhang, J. X.; Lu, M. W.; Liu, P. B.; Li, T. H. Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon. J. Colloid Interface Sci. 2021, 588, 657–669.

    Article  CAS  PubMed  Google Scholar 

  44. Yi, X. L.; Li, X. H.; Zhong, J.; Wang, S. W.; Wang, Z. X.; Guo, H. J.; Wang, J. X.; Yan, G. C. Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode. Adv. Funct. Mater. 2022, 32, 2209523.

    Article  CAS  Google Scholar 

  45. Chen, F. P.; Di, Y. J.; Su, Q.; Xu, D. M.; Zhang, Y. P.; Zhou, S.; Liang, S. Q.; Cao, X. X.; Pan, A. Q. Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries. Carbon Energy 2023, 5, e191.

    Article  CAS  Google Scholar 

  46. Yin, X. P.; Lu, Z. X.; Wang, J.; Feng, X. C.; Roy, S.; Liu, X. S.; Yang, Y.; Zhao, Y. F.; Zhang, J. J. Enabling fast Na+ tanseer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 2022, 34, 2109282.

    Article  CAS  Google Scholar 

  47. Malyi, O. I.; Sopiha, K.; Kulish, V. V.; Tan, T. L.; Manzhos, S.; Persson, C. A computational study of Na behavior on graphene. Appl. Surf. Sci. 2015, 333, 235–243.

    Article  CAS  Google Scholar 

  48. Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479.

    Article  CAS  Google Scholar 

  49. Chen, X. Y.; Tian, J. Y.; Li, P.; Fang, Y. L.; Fang, Y. J.; Liang, X. M.; Feng, J. W.; Dong, J.; Ai, X. P.; Yang, H. X. et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy Mater. 2022, 12, 2200886.

    Article  CAS  Google Scholar 

  50. Zhang, P.; Shu, Y. R.; Wang, Y.; Ye, J. H.; Yang, L. Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. J. Mater. Chem. A 2023, 11, 2920–2932.

    Article  CAS  Google Scholar 

  51. Jiang, M. W.; Hou, Z. D.; Wang, J. J.; Ren, L. B.; Zhang, Y.; Wang, J. G. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage. Nano Energy 2022, 102, 107708.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 51772249), Key Research and Technological Achievements Transformation Plan Project of Inner Mongolia Autonomous Region (No. 2023YFHH0063), and Fundamental Research Funds for the Central Universities (No. 3102019JC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gan Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Jiang, M., Lei, D. et al. Regulation of pseudographitic carbon domain to boost sodium energy storage. Nano Res. 17, 5188–5196 (2024). https://doi.org/10.1007/s12274-024-6448-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6448-1

Keywords