Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An intelligent epilepsy seizure detection system using adaptive mode decomposition of EEG signals

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Epilepsy is a chronic neurological disorder that involves abnormal electrical signal patterns of the brain called seizures. The brain’s electrical signals can be recorded using an electroencephalogram (EEG). EEG recordings can be used to monitor complex and non-stationary signals produced by the brain for detecting epilepsy seizures. Machine learning (ML) methods have been successfully applied in different domains to accurately classify the patterns based upon dataset features. However, ML methods are unable to analyze the raw EEG signals. Appropriate features must be extracted from EEG recordings for detecting epilepsy seizures using signal processing methods. This work proposes an intelligent system by integrating variational mode decomposition (VMD) and Hilbert transform (HT) method for extracting useful features from EEG signals and stacked neural network (NN) method for detecting epilepsy seizures. VMD method decomposers EEG signals into intrinsic mode functions, followed by the HT method for extracting features from EEG signals. The stacked-NN approach is applied for detecting epilepsy seizures using extracted features. The performance of the proposed system is validated using benchmark datasets for epilepsy seizure detection provided by Bonn University and, Neurology and Sleep Centre, New Delhi (NSC-ND). The performance of the proposed system is compared with other ML methods and state of the art approaches in the field. The reported results demonstrate that the proposed system can detect up to 100% accurate epilepsy seizures using NSC-ND data set and up to 99% accurate epilepsy seizures using Bonn university dataset. The comparative results also demonstrate the better performance of the proposed system over other ML methods and existing approaches for detecting epilepsy seizures. The remarkable performance of the proposed system can help neurological experts to detect epilepsy seizures accurately using EEG signals and can be embedded into the real-time diagnosis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376

    Article  Google Scholar 

  2. Abualigah L, Diabat A, Sumari P, Gandomi AH (2021) Applications, deployments, and integration of internet of drones (iod): a review. IEEE Sens J

  3. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  4. Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS (2012) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7(4):401–408

    Article  Google Scholar 

  5. Akyol K (2020) Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection. Expert Syst Appl 148:113239

    Article  Google Scholar 

  6. Alhussein M, Muhammad G, Hossain MS (2019) Eeg pathology detection based on deep learning. IEEE Access 7:27781–27788

    Article  Google Scholar 

  7. Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, Chooi WT (2015) Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Aust Phys Eng Sci Med 38(1):139–149

    Article  Google Scholar 

  8. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Article  CAS  Google Scholar 

  9. Bhattacharyya A, Pachori RB, Upadhyay A, Acharya UR (2017) Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl Sci 7(4):385

    Article  Google Scholar 

  10. Bhattacharyya A, Singh L, Pachori RB (2018) Fourier-bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digital Signal Process 78:185–196

    Article  Google Scholar 

  11. Carvalho VR, Moraes MF, Braga AP, Mendes EM (2020) Evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification. Biomed Signal Process Control 62:102073

    Article  Google Scholar 

  12. Cepukenas J (2015) Applying rule extraction and rule refinement techniques to classifiers. Ph.D. thesis, Aberdeen University

  13. Chen D, Wan S, Xiang J, Bao FS (2017) A high-performance seizure detection algorithm based on discrete wavelet transform (DWT) and EEG. PLoS ONE 12(3):e0173138

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen S, Zhang X, Chen L, Yang Z (2019) Automatic diagnosis of epileptic seizure in electroencephalography signals using nonlinear dynamics features. IEEE Access 7:61046–61056

    Article  Google Scholar 

  15. Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT press, New York

    Book  Google Scholar 

  16. Cole S, Voytek B (2019) Cycle-by-cycle analysis of neural oscillations. J Neurophysiol 122(2):849–861

    Article  PubMed  Google Scholar 

  17. Dorai A, Ponnambalam, K (2010) Automated epileptic seizure onset detection. In: 2010 International Conference on Autonomous and Intelligent Systems, AIS 2010, pp 1–4. IEEE

  18. Dragomiretskiy K, Zosso D (2013) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  Google Scholar 

  19. Esteller R, Echauz, J, Tcheng, T, Litt, B, Pless, B (2001) Line length: an efficient feature for seizure onset detection. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol 2, pp 1707–1710. IEEE

  20. Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15(1):3133–3181

    Google Scholar 

  21. Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61(16):3999–4010

    Article  Google Scholar 

  22. Guerrero-Mosquera C, Trigueros AM, Franco JI, Navia-Vazquez A (2010) New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med Biol Eng Comput 48(4):321–330

    Article  PubMed  Google Scholar 

  23. Hassan AR, Subasi A, Zhang Y (2020) Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise. Knowl-Based Syst 191:105333

    Article  Google Scholar 

  24. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A 454(1971):903–995

    Article  Google Scholar 

  25. Jas M, Engemann DA, Bekhti Y, Raimondo F, Gramfort A (2017) Autoreject: automated artifact rejection for MEG and EEG data. Neuroimage 159:417–429

    Article  PubMed  Google Scholar 

  26. Kumar G (2014) Evaluation metrics for intrusion detection systems—a study. Evaluation 2(11):11–17

    Google Scholar 

  27. Kumar R, Saini I (2014) Empirical wavelet transform based ECG signal compression. IETE J Res 60(6):423–431

    Article  Google Scholar 

  28. Lashgari E, Liang D, Maoz U (2020) Data augmentation for deep-learning-based electroencephalography. J Neurosci Methods 346:108885

    Article  PubMed  Google Scholar 

  29. Lee H, Kim S (2016) Black-box classifier interpretation using decision tree and fuzzy logic-based classifier implementation. Int J Fuzzy Logic Intell Syst 16(1):27–35

    Article  Google Scholar 

  30. Lian J, Liu Z, Wang H, Dong X (2018) Adaptive variational mode decomposition method for signal processing based on mode characteristic. Mech Syst Signal Process 107:53–77

    Article  Google Scholar 

  31. Liu W, Cao S, Chen Y (2015) Seismic time-frequency analysis via empirical wavelet transform. IEEE Geosci Remote Sens Lett 13(1):28–32

    Article  CAS  Google Scholar 

  32. Logesparan L, Casson AJ, Rodriguez-Villegas E (2012) Optimal features for online seizure detection. Med Biol Eng Comput 50(7):659–669

    Article  PubMed  Google Scholar 

  33. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(2):314–333

    Article  PubMed  Google Scholar 

  34. Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the k-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38(10):13475–13481

    Article  Google Scholar 

  35. Pachori RB (2008) Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Lett Signal Process

  36. Panda S, Das A, Mishra S, Mohanty MN (2021) Epileptic seizure detection using deep ensemble network with empirical wavelet transform. Meas Sci Rev 21(4):110–116

    Article  Google Scholar 

  37. Rout SK, Biswal PK (2020) An efficient error-minimized random vector functional link network for epileptic seizure classification using VMD. Biomed Signal Process Control 57

    Article  Google Scholar 

  38. Sahu R, Dash SR, Cacha LA, Poznanski RR, Parida S (2020) Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques. J Integr Neurosci 19(1):1–9

    Article  PubMed  Google Scholar 

  39. Sanz-García A, Pérez-Romero M, Pastor J, Sola RG, Vega-Zelaya L, Vega G, Monasterio F, Torrecilla C, Pulido P, Ortega GJ (2019) Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach. J Neural Eng 16(2)

    Article  PubMed  Google Scholar 

  40. Satapathy SK, Jagadev AK, Dehuri S (2017) Weighted majority voting based ensemble of classifiers using different machine learning techniques for classification of eeg signal to detect epileptic seizure. Informatica 41(1):99

    Google Scholar 

  41. Smith JS (2005) The local mean decomposition and its application to eeg perception data. J R Soc Interface 2(5):443–454

    Article  PubMed  PubMed Central  Google Scholar 

  42. Subasi A, Kevric J, Canbaz MA (2019) Epileptic seizure detection using hybrid machine learning methods. Neural Comput Appl 31(1):317–325

    Article  Google Scholar 

  43. Swami P, Gandhi TK, Panigrahi BK, Tripathi M, Anand S (2016) A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst Appl 56:116–130

    Article  Google Scholar 

  44. Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci

  45. Wang Y, Markert R, Xiang J, Zheng W (2015) Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech Syst Signal Process 60:243–251

    Article  Google Scholar 

  46. WHO: Epilepsy (2021) https://www.who.int/news-room/fact-sheets/detail/epilepsy

  47. Wu M, Qin H, Wan X, Du Y (2021) HFO detection in epilepsy: a stacked denoising autoencoder and sample weight adjusting factors-based method. IEEE Trans Neural Syst Rehabil Eng 29:1965–1976

    Article  PubMed  Google Scholar 

  48. Zhang T, Chen W (2016) LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 25(8):1100–1108

    Article  PubMed  Google Scholar 

  49. Zhang Y, Zhang Y, Wang J, Zheng X (2015) Comparison of classification methods on EEG signals based on wavelet packet decomposition. Neural Comput Appl 26(5):1217–1225

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulshan Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Chander, S. & Almadhor, A. An intelligent epilepsy seizure detection system using adaptive mode decomposition of EEG signals. Phys Eng Sci Med 45, 261–272 (2022). https://doi.org/10.1007/s13246-022-01111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01111-9

Keywords