Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling and inferences for bivariate signed integer-valued autoregressive models

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This study examines a first-order bivariate signed integer-valued autoregressive (BSINAR) model, designed for analyzing time series of counts that may include negative values or exhibit negative autocorrelations or stochastic trends. For the estimation methods, we consider the minimum density power divergence estimator (MDPDE), well-known for its robustness against outliers. The limiting behavior of the MDPDE is examined under certain regularity conditions. The MDPDE is used to construct a score vector-based parameter change test. To assess the performance of the MDPDE and demonstrate its validity, we conduct a Monte Carlo simulation. The proposed methods are also applied to analyze earthquake data from the Earthquake Hazards Program of the United States Geological Survey (USGS) and financial data from Euro-Bund and BTP futures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets are obtained from the earthquake catalog on the USGS earthquake hazards program website (https://earthquake.usgs.gov/earthquakes/).

References

  • Al-Osh, M. A., & Alzaid, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process. Journal of Time Series Analysis, 8, 261–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Basu, A., Harris, I., Hjort, N., & Jones, M. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika, 85, 549–559.

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley, P. (1968). Convergence of probability measure. New York: Wiley.

    MATH  Google Scholar 

  • Bulla, J., Chesneau, C., & Kachour, M. (2017). A bivariate first-order signed integer-valued autoregressive process. Communications in Statistics-Theory and Methods, 46, 6590–6604.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, H., Zhu, F., & Liu, X. (2024). Two-step conditional least squares estimation for the bivariate Z-valued INAR(1) model with bivariate skellam innovations. Communications in Statistics-Theory and Methods, 53, 4085–4106.

    Article  MathSciNet  MATH  Google Scholar 

  • Csörgő, M., & Horváth, L. (1997). Limit theorems in change-point analysis. Chichester: Wiley.

    MATH  Google Scholar 

  • Cui, Y., Li, Q., & Zhu, F. (2021). Modeling Z-valued time series based on new versions of the Skellam INGARCH model. Brazilian Journal of Probability and Statistics, 35, 293–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Darolles, S., Fol, G., Lu, Y., & Sun, R. (2019). Bivariate integer-autoregressive process with an application to mutual fund flows. Journal of Multivariate Analysis, 173, 181–203.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, R. A., & Liu, H. (2016). Theory and inference for a class of nonlinear models with application to time series of counts. Statistica Sinica, 26, 1673–1707.

    MathSciNet  MATH  Google Scholar 

  • Du, J. G., & Li, Y. (1991). The integer-valued autoregressive (INAR(p)) model. Journal of Time Series Analysis, 12, 129–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Durio, A., & Isaia, E. (2011). The minimum density power divergence approach in building robust regression models. Informatica, 22, 43–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett, R. (2019). Probability: Theory and example (5th ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Ferland, R., Latour, A., & Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27, 923–942.

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos, K., Rahbek, A., & Tjøstheim, D. (2009). Poisson autoregression. Journal of American Statistical Association, 104, 1430–1439.

    Article  MathSciNet  MATH  Google Scholar 

  • Franke, J., & Subba Rao, T. (1993). Multivariate first-order integer-valued autoregression. Technical report. No. 95, Universität Kaiserslautern.

  • Franke, J., Kirch, C., & Kamgaing, J. T. (2012). Changepoints in time series of counts. Journal of Time Series Analysis, 33, 757–770.

    Article  MathSciNet  MATH  Google Scholar 

  • Fujisawa, H., & Eguchi, S. (2006). Robust estimation in the normal mixture model. Journal of Statistical Planning and Inferences, 136, 3989–4011.

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer, M. (2018). Ergodic properties of Markov processes, Lecture notes. https://www.hairer.org/notes/Markov.pdf

  • Hong, C., & Kim, Y. (2001). Automatic selection of the tuning parameter in the minimum density power divergemce estimation. Journal of the Korean Statistical Society, 30, 453–465.

    MathSciNet  MATH  Google Scholar 

  • Hudecová, Š, Hušková, M., & Meintanis, S. G. (2017). Tests for structural changes in time series of counts. Scandinavian Journal of Statistics, 44, 843–865.

    Article  MathSciNet  MATH  Google Scholar 

  • Kachour, M., & Truquet, L. (2011). A p-order signed integer-valued autoregressive (SINAR(p)) model. Journal of Time Series Analysis, 32, 223–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, J., & Lee, S. (2009). Parameter change test for random coefficient integer-valued autoregressive processes with application to polio data analysis. Journal of Time Series Analysis, 30, 239–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, J., & Lee, S. (2014). Parameter change test for Poisson autoregressive models. Scandinavian Journal of Statistics, 41, 1136–1152.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, B., & Lee, S. (2020). Robust estimation for general integer-valued time series models. Annals of the Institute of Statistical Mathematics, 72, 1371–1396.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, H., & Park, Y. S. (2008). A non-stationary integer-valued autoregressive model. Statistical Papers, 49, 485–502.

    Article  MathSciNet  MATH  Google Scholar 

  • Latour, A. (1997). The multivariate GINAR(p) process. Advances in Applied Probability, 29, 228–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., Ha, J., Na, O., & Na, S. (2003). The CUSUM test for parameter change in time series models. Scandinavian Journal of Statistics, 30, 781–796.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., & Jo, M. (2023). Bivariate random coefficient integer-valued autoregressive models: Parameter estimation and change point test. Journal of Time Series Analysis, 44, 644–666.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., & Jo, M. (2023). Robust estimation for bivariate integer valued autoregressive models based on minimum density power divergence. Journal of Statistical Computation and Simulation, 93, 3156–3184.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., & Kim, B. (2021). Recent progress in parameter change test for integer-valued time series models. Journal of the Korean Statistical Society, 50, 730–755.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., Kim, D., & Kim, B. (2023). Modeling and inference for multivariate time series of counts based on the INGARCH scheme. Computational Statistics and Data Analysis, 177, 107579.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, Y., & Lee, S. (2019). CUSUM test for general nonlinear integer-valued GARCH models. Annals of the Institute of Statistical Mathematics, 71, 1033–1057.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Q., Chen, H., & Zhu, F. (2024). Z-valued time series: Models, properties and comparison. Journal of Statistical Planning and Inference, 230, 106099.

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie, E. (1985). Some simple models for discrete variate time series. Water Resources Bulletin, 21, 645–650.

    Article  MATH  Google Scholar 

  • Page, R., Boore, D., Bucknam, R., & Thatcher, W. (1992). Goals, opportunities, and priorities for the USGS Earthquake Hazards Reduction Program. U.S: G.P.O., Books and Open-File Report Sales, U.S. Geological Survey.

  • Popović, P. (2015). Random coefficient bivariate INAR(1) process. Facta Universitatis Series, 30, 263–280.

    MathSciNet  MATH  Google Scholar 

  • Scotto, M., Weiß, C., & Gouveia, S. (2015). Thinning-based models in the analysis of integer-valued time series: A review. Statistical Modelling, 15, 590–618.

    Article  MathSciNet  MATH  Google Scholar 

  • Steutel, F., & van Harn, K. (1979). Discrete analogues of self-decomposability and stability. The Annals of Probability, 7, 893–899.

    Article  MathSciNet  MATH  Google Scholar 

  • Tashman, L. (2000). Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting, 16, 437–450.

    Article  MATH  Google Scholar 

  • Warwick, J., & Jones, M. C. (2005). Choosing a robustness tuning parameter. Journal of Statistical Computation and Simulation, 75, 581–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Weiß, C. H. (2008). Thinning operations for modeling time series of counts—a survey. ASta Advances in Statistical Analysis, 92, 319–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Weiß, C. H. (2018). An introduction to discrete-valued time series. New York: Wiley.

    Book  MATH  Google Scholar 

  • Xiong, L., & Zhu, F. (2022). Minimum density power divergence estimator for negative binomial integer-valued GARCH models. Communications in Mathematics and Statistics, 10, 233–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, Y., & Zhu, F. (2022). A new GJR-GARCH model for Z-valued time series. Journal of Time Series Analysis, 43, 490–500.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, M., Wang, D., Yang, K., & Liu, Y. (2020). Bivariate first-order random coefficient integer-valued autoregressive processes. Journal of Statistical Planning and Inference, 204, 153–176.

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, H., Basawa, I., & Datta, S. (2007). The first order random coefficient integer-valued autoregressive processes. Journal of Statistical Planning and Inference, 173, 212–229.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank an AE and two anonymous referees for their valuable comments to improve the quality of this paper. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2021R1A2C1004009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyeol Lee.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest. Sangyeol Lee is an Associate Editor of Journal of the Korean Statistical Society. Associate Editor status has no bearing on editorial consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 148 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Jo, M. Modeling and inferences for bivariate signed integer-valued autoregressive models. J. Korean Stat. Soc. (2024). https://doi.org/10.1007/s42952-024-00300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42952-024-00300-4

Keywords