Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generation of Diophantine Sets by Computing P Systems with External Output

  • Conference paper
  • First Online:
Unconventional Models of Computation (UMC 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2509))

Included in the following conference series:

  • 450 Accesses

Abstract

In this paper a variant of P systems with external output designed to compute functions on natural numbers is presented. These P systems are stable under composition and iteration of functions. We prove that every diophantine set can be generated by such P systems; then, the universality of this model can be deduced from the theorem by Matiyasevich, Robinson, Davis and Putnam in which they establish that every recursively enumerable set is a diophantine set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, 1993.

    Google Scholar 

  2. G. Păun. Computing with membranes. An introduction. Bull. European Assoc. Theoret. Comput. Sci., 67:139–152, 1999.

    MATH  Google Scholar 

  3. G. Păun. Computing with membranes. J. Comput. System Sci., 61(1):108–143, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Păun and G. Rozenberg. A guide to membrane computing. Theoret. Comput. Sci., to appear.

    Google Scholar 

  5. G. Păun, G. Rozenberg, and A. Salomaa. Membrane computing with external output. Fund. Inform., 41(3):313–340, 2000.

    MATH  MathSciNet  Google Scholar 

  6. F. Sancho Caparrini. Verificación de programas en modelos de computación no convencionales. PhD thesis, Universidad de Sevilla, Departamento de Ciencias de la Computación e Inteligencia Artificial, 2002.

    Google Scholar 

  7. The P Systems Web Page, (http://dna.bio.disco.unimib.it/psystems/)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez, Á.R., Pérez Jiménez, M.J. (2002). Generation of Diophantine Sets by Computing P Systems with External Output. In: Unconventional Models of Computation. UMC 2002. Lecture Notes in Computer Science, vol 2509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45833-6_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45833-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44311-7

  • Online ISBN: 978-3-540-45833-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics