Abstract
In this paper a variant of P systems with external output designed to compute functions on natural numbers is presented. These P systems are stable under composition and iteration of functions. We prove that every diophantine set can be generated by such P systems; then, the universality of this model can be deduced from the theorem by Matiyasevich, Robinson, Davis and Putnam in which they establish that every recursively enumerable set is a diophantine set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, 1993.
G. Păun. Computing with membranes. An introduction. Bull. European Assoc. Theoret. Comput. Sci., 67:139–152, 1999.
G. Păun. Computing with membranes. J. Comput. System Sci., 61(1):108–143, 2000.
G. Păun and G. Rozenberg. A guide to membrane computing. Theoret. Comput. Sci., to appear.
G. Păun, G. Rozenberg, and A. Salomaa. Membrane computing with external output. Fund. Inform., 41(3):313–340, 2000.
F. Sancho Caparrini. Verificación de programas en modelos de computación no convencionales. PhD thesis, Universidad de Sevilla, Departamento de Ciencias de la Computación e Inteligencia Artificial, 2002.
The P Systems Web Page, (http://dna.bio.disco.unimib.it/psystems/)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jiménez, Á.R., Pérez Jiménez, M.J. (2002). Generation of Diophantine Sets by Computing P Systems with External Output. In: Unconventional Models of Computation. UMC 2002. Lecture Notes in Computer Science, vol 2509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45833-6_15
Download citation
DOI: https://doi.org/10.1007/3-540-45833-6_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44311-7
Online ISBN: 978-3-540-45833-3
eBook Packages: Springer Book Archive