Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Decision Trees for the Semi-automatic Development of Medical Data Patterns: A Computer-Supported Framework

  • Chapter
Web-Based Applications in Healthcare and Biomedicine

Part of the book series: Annals of Information Systems ((AOIS,volume 7))

  • 984 Accesses

Abstract

The development of clinical practice guidelines is a difficult task. In most cases, it requires extensive elaboration of medical data repositories and tailoring of the corresponding results according to the medical setting under consideration. This tailoring should account for variations in diverse clinical settings. However, in any case, it has to be based on well-structured medical data patterns that provide experts with the necessary knowledge. Towards facilitating the overall task, this paper presents a computer-supported framework for the semi-automatic development of meaningful medical data patterns. The proposed framework comprises a novel hybrid methodology, which exploits decision trees features, and a web-based system that has been developed to accommodate this methodology. The overall framework pays much attention to the issues of user-friendliness, accuracy of results and visualization of the produced patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Field M, Lohr K. Clinical Practice Guidelines: Directions for a New Program. , Washington, DC: National Academy Press, 1990.

    Google Scholar 

  2. Grimshaw J, Russell I. Effects of clinical guidelines on medical practice: a systematic review of rigorous evaluations. Lancet 1993;342:1317–1322.

    Article  CAS  PubMed  Google Scholar 

  3. Brouwers M, Browman G. Development of clinical practice guidelines: surgical perspective. World J Surg 1999;23(12):1236–1241.

    Article  CAS  PubMed  Google Scholar 

  4. Owens D, Nease R. Development of outcome-based practice guidelines: a method for structuring problems and synthesizing evidence. Jt Comm J Qual Improvement 1993;19:248–263.

    CAS  Google Scholar 

  5. Mitchell T. Machine Learning. New York: McGraw-Hill International Editions, 1997.

    Google Scholar 

  6. Cooper G, Aliferis C, Ambrosino R, Aronis J, Buchanan B, Caruana R, Fine M, Glymour C, Gordon G, Hanusa B, Janosky J, Meek C, Mitchell T, Richardson T, Spirtes P. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med 1997;9(2):107–138.

    Article  CAS  PubMed  Google Scholar 

  7. Kukar M, Kononenko I, Silvester T. Machine learning in prognosis of the femoral neck fracture recovery. Artif Intell Med 1996;8:431–451.

    Article  CAS  PubMed  Google Scholar 

  8. Mani S, Shankle W, Dick M, Pazzani M. Two-stage machine learning model for guideline development. Artif Intell Med 1999;16(1):51–71.

    Article  CAS  PubMed  Google Scholar 

  9. Woolery L, Crzymala-Busse J. Machine learning for an expert system to predict preterm British risk. J Am Inform Assoc 1994;1(6):439–446.

    CAS  Google Scholar 

  10. Zupan B, Demsar J, Kattan M, Beck J and. Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 2000;20(1):59–75.

    Article  CAS  PubMed  Google Scholar 

  11. Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 2001;23(1):89–109.

    Article  CAS  PubMed  Google Scholar 

  12. Soman T, Bobbie P. Classification of arrhythmia using machine learning techniques. WSEAS Trans Comput 2005;4(6):548–552.

    Google Scholar 

  13. Quinlan R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1993.

    Google Scholar 

  14. Clercq P, Blom J, Korsten H, Hasman A. Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med 2004;31(1):1–27.

    Article  PubMed  Google Scholar 

  15. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes R, Hall R, Johnson P, Jones N, Kumar A, Miksch S, Quaglini S, Seyfang A, Shortliffe E, Stefanelli M. Comparing computer-interpretable guideline models: a case study approach. J Am Med Inform Assoc 2003;10(1):52–68.

    Article  PubMed  Google Scholar 

  16. Wang D, Peleg M, Tu S, Boxwala A, Greenes R, Patel V, Shortliffe E. Representation primitives, process models and patient data in computer-interpretable clinical practice guidelines: A literature review of guideline representation models. Int J Med Inform 2002;68(1):59–70.

    Article  PubMed  Google Scholar 

  17. Hripcsak G, Clayton P, Pryor T, Haug P, Wigertz O, Van der Lei J. The Arden Syntax for Medical Logic Modules. Proceedings of the 14th Annual Symposium on Computer Applications in Medical Care 1990;200–204.

    Google Scholar 

  18. Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD process for extracting useful knowledge from volumes of data. Commun ACM 1996;39(11):27–34.

    Article  Google Scholar 

  19. Shekelle P, Woolf S, Eccles M, Grimshaw J. Clinical guidelines: developing guidelines. Br Med J 1999;318:593–596.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Fountoulaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fountoulaki, A., Karacapilidis, N., Manatakis, M. (2010). Using Decision Trees for the Semi-automatic Development of Medical Data Patterns: A Computer-Supported Framework. In: Lazakidou, A. (eds) Web-Based Applications in Healthcare and Biomedicine. Annals of Information Systems, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1274-9_16

Download citation

Publish with us

Policies and ethics