Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reinforcement Learning of Musculoskeletal Control from Functional Simulations

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

Abstract

To diagnose, plan, and treat musculoskeletal pathologies, understanding and reproducing muscle recruitment for complex movements is essential. With muscle activations for movements often being highly redundant, nonlinear, and time dependent, machine learning can provide a solution for their modeling and control for anatomy-specific musculoskeletal simulations. Sophisticated biomechanical simulations often require specialized computational environments, being numerically complex and slow, hindering their integration with typical deep learning frameworks. In this work, a deep reinforcement learning (DRL) based inverse dynamics controller is trained to control muscle activations of a biomechanical model of the human shoulder. In a generalizable end-to-end fashion, muscle activations are learned given current and desired position-velocity pairs. A customized reward functions for trajectory control is introduced, enabling straightforward extension to additional muscles and higher degrees of freedom. Using the biomechanical model, multiple episodes are simulated on a cluster simultaneously using the evolving neural models of the DRL being trained. Results are presented for a single-axis motion control of shoulder abduction for the task of following randomly generated angular trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/CAiM-lab/PPO.

References

  1. Abdi, A.H., Saha, P., Srungarapu, V.P., Fels, S.: Muscle excitation estimation in biomechanical simulation using NAF reinforcement learning. In: Computational Biomechanics for Medicine, pp. 133–141 (2020)

    Google Scholar 

  2. Artstein, Z.: Discrete and continuous bang-bang and facial spaces or: look for the extreme points. Siam Rev. 22(2), 172–185 (1980)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 2. Athena Scientific, Belmont (2012)

    MATH  Google Scholar 

  4. Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005)

    Article  Google Scholar 

  5. Bolsterlee, B., Veeger, H.E.J., van der Helm, F.C.T.: Modelling clavicular and scapular kinematics: from measurement to simulation. Med. Biol. Eng. Comput. 52(3), 283–291 (2013). https://doi.org/10.1007/s11517-013-1065-2

    Article  Google Scholar 

  6. Brown, J.M.M., Wickham, J.B., McAndrew, D.J., Huang, X.F.: Muscles within muscles: coordination of 19 muscle segments within three shoulder muscles during isometric motor tasks. J. Electromyogr. Kinesiol. 17(1), 57–73 (2007)

    Article  Google Scholar 

  7. Contemori, S., Panichi, R., Biscarini, A.: Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction. Hum. Mov. Sci. 64, 55–66 (2019)

    Article  Google Scholar 

  8. Craik, J.D., Mallina, R., Ramasamy, V., Little, N.J.: Human evolution and tears of the rotator cuff. Int. Orthop. 38(3), 547–552 (2013). https://doi.org/10.1007/s00264-013-2204-y

    Article  Google Scholar 

  9. Dhariwal, P., et al.: OpenAI baselines (2017). https://github.com/openai/baselines

  10. Di Giacomo, G., Pouliart, N., Costantini, A., De Vita, A.: Atlas of Functional Shoulder Anatomy. Springer, New York (2008)

    Book  Google Scholar 

  11. Faure, F., et al.: SOFA: a multi-model framework for interactive physical simulation. In: Payan, Y. (ed.) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. SMTEB, vol. 11, pp. 283–321. Springer, Heidelberg (2012). https://doi.org/10.1007/8415_2012_125

    Chapter  Google Scholar 

  12. Gerber, C., Snedeker, J.G., Baumgartner, D., Viehöfer, A.F.: Supraspinatus tendon load during abduction is dependent on the size of the critical shoulder angle: a biomechanical analysis. J. Orthop. Res. 32(7), 952–957 (2014)

    Article  Google Scholar 

  13. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. arXiv:1707.02286 (2017)

  14. James, S., Johns, E.: 3D simulation for robot arm control with deep Q-learning. arXiv:1609.03759 (2016)

  15. Kidziński, Ł., et al.: Learning to run challenge: synthesizing physiologically accurate motion using deep reinforcement learning. In: Escalera, S., Weimer, M. (eds.) The NIPS ’17 Competition: Building Intelligent Systems. TSSCML, pp. 101–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94042-7_6

    Chapter  Google Scholar 

  16. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv:1509.02971 (2015)

  17. Lloyd, J.E., Stavness, I., Fels, S.: ArtiSynth: a fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. SMTEB, vol. 11, pp. 355–394. Springer, Heidelberg (2012). https://doi.org/10.1007/8415_2012_126

    Chapter  Google Scholar 

  18. Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K.: Bodyparts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 37, D782–D785 (2008)

    Article  Google Scholar 

  19. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  20. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

    Google Scholar 

  21. Pean, F., Goksel, O.: Surface-based modeling of muscles: functional simulation of the shoulder. Med. Eng. Phys. 82, 1–12 (2020)

    Article  Google Scholar 

  22. Péan, F., Tanner, C., Gerber, C., Fürnstahl, P., Goksel, O.: A comprehensive and volumetric musculoskeletal model for the dynamic simulation of the shoulder function. Comput. Methods Biomech. Biomed. Eng. 22(7), 740–751 (2019)

    Article  Google Scholar 

  23. Reed, D., Cathers, I., Halaki, M., Ginn, K.: Does supraspinatus initiate shoulder abduction? J. Electromyogr. Kinesiol. 23(2), 425–429 (2013)

    Article  Google Scholar 

  24. Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.: Trust region policy optimization. In: International Conference on Machine Learning (ICML), vol. PMLR 37, pp. 1889–1897 (2015)

    Google Scholar 

  25. Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv:1707.06347 (2017)

  27. Silver, D., Huang, A., Maddison, C.J., Guez, A., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  28. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2020)

    Google Scholar 

  29. Stavness, I., Lloyd, J.E., Fels, S.: Automatic prediction of tongue muscle activations using a finite element model. J. Biomech. 45(16), 2841–2848 (2012)

    Article  Google Scholar 

  30. Streit, J.J., et al.: Pectoralis major tendon transfer for the treatment of scapular winging due to long thoracic nerve palsy. J. Shoulder Elbow Surg. 21(5), 685–690 (2012)

    Article  Google Scholar 

  31. Tsurumine, Y., Cui, Y., Uchibe, E., Matsubara, T.: Deep reinforcement learning with smooth policy update: application to robotic cloth manipulation. Robot. Autonom. Syst. 112, 72–83 (2019)

    Article  Google Scholar 

  32. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: AAAI Conference on Artificial Intelligence, pp. 2094–2100 (2016)

    Google Scholar 

  33. Wickham, J., Pizzari, T., Stansfeld, K., Burnside, A., Watson, L.: Quantifying ‘normal’ shoulder muscle activity during abduction. J. Electromyogr. Kinesiol. 20(2), 212–222 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orcun Goksel .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 696 KB)

Supplementary material 2 (mp4 718 KB)

Supplementary material 3 (mp4 716 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joos, E., Péan, F., Goksel, O. (2020). Reinforcement Learning of Musculoskeletal Control from Functional Simulations. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics