Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Competition of Shape and Texture Bias by Multi-view Image Representation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13022))

Included in the following conference series:

Abstract

There are mainly two views on the interpretation of high efficiency of Convolutional Neural Networks (CNNs) for the task of image classification: shape bias and texture bias. This is critical to the causality and reliability of CNN models in real applications. In this work, we try to explore the power of CNNs and reconcile the hypothesis contradiction of CNNs from a multi-view image representation. Firstly, we assume an image is generated from object shape representation, object texture representation, and background information. Secondly, we segment and recombine the object shape, texture and image background through two losses: image reconstructed loss and feature discrepancy loss. Finally, the classification loss is combined by shape, texture and background contributions weighted by multi-view features. Comprehensive experiments conducted on real-world datasets show that, first, CNNs generally do not have texture or shape bias, which change with the internal bias of data; second, CNNs are learning knowledge in a lazy way, i.e., high level knowledge is learned only if low level knowledge does not satisfy the task requirements. Our findings might benefit the interpretability of CNNs and provide insight of more robust design.

This paper is supported by National Key Research and Development Program of China under grant No. 2018YFB0204403, No. 2017YFB1401202 and No. 2018YFB1003500.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Ballester, P., Araujo, R.M.: On the performance of GoogLeNet and AlexNet applied to sketches. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  3. Bhattacharjee, D., et al.: DUNIT: detection-based unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  4. Brendel, W., Bethge, M.: Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet. arXiv preprint arXiv:1904.00760 (2019)

  5. Cho, D., Tai, Y.-W., Kweon, I.: Natural image matting using deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 626–643. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_39

    Chapter  Google Scholar 

  6. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2016)

  7. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Univ. Montreal 1341(3), 1 (2019)

    Google Scholar 

  8. Funke, C.M., Gatys, L.A., Ecker, A.S., Bethge, M.: Synthesising dynamic textures using convolutional neural networks. arXiv preprint arXiv:1702.07006 (2017)

  9. Gatys, L., Ecker, A.S., Bethge, M.: Texture sythesis using convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 262–270 (2015)

    Google Scholar 

  10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  11. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-mann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  12. Hao, S., Zhou, Y., Guo, Y.: A brief survey on semantic segmentation with deep learning. Neurocomputing 406 (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  15. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision, pp. 172–189 (2018)

    Google Scholar 

  16. Kubilius, J., Bracci, S., de Beeck, H.P.O.: Deep neural networks as a computational model for human shape sensitivity. PLoS Comput. Biol. 12(4), e1004896 (2016)

    Google Scholar 

  17. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  21. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  22. Narayanaswamy, S., et al.: Learning disentangled representations with semi-supervised deep generative models. In: Advances in Neural Information Processing Systems, pp. 5925–5935 (2017)

    Google Scholar 

  23. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  24. Ritter, S., Barrett, D.G., Santoro, A., Botvinick, M.M.: Cognitive psychology for deep neural networks: a shape bias case study. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2940–2949 (2017). JMLR.org

  25. Shen, X., Tao, X., Gao, H., Zhou, C., Jia, J.: Deep automatic portrait matting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 92–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_6

    Chapter  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  27. Tran, L., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1415–1424 (2017)

    Google Scholar 

  28. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6924–6932 (2017)

    Google Scholar 

  29. Wang, N., Chen, M., Subbalakshmi, K.P.: Explainable CNN-attention networks (C-attention network) for automated detection of Alzheimer’s disease. arXiv preprint arXiv:2006.14135 (2020)

  30. Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  31. Wang, R., et al.: Multi-view bearing fault diagnosis method based on deep learning. J. Phys. Conf. Ser. 1757(1) (2021)

    Google Scholar 

  32. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  33. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2017)

    Google Scholar 

  34. Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J.: Explainable AI: a brief survey on history, research areas, approaches and challenges. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 563–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_51

    Chapter  Google Scholar 

  35. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  36. Zhang, C., Wang, D.-H.: Exploring the prediction consistency of multiple views for transductive visual recognition. IEEE Signal Process. Lett. 28, 668–672 (2021)

    Article  Google Scholar 

  37. Zhao, B., et al.: Multi-view image generation from a single-view. In: Proceedings of the 26th ACM International Conference on Multimedia (2018)

    Google Scholar 

Download references

Acknowledgments

This paper is supported by National Key Research and Development Program of China under grant No. 2018YFB0204403, No. 2017YFB1401202 and No. 2018YFB1003500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, L., Wang, J., Huang, Z., Xiao, J. (2021). A Competition of Shape and Texture Bias by Multi-view Image Representation. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13022. Springer, Cham. https://doi.org/10.1007/978-3-030-88013-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88013-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88012-5

  • Online ISBN: 978-3-030-88013-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics