Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Blind Surveillance Image Quality Assessment via Deep Neural Network Combined with the Visual Saliency

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

Abstract

The intelligent video surveillance system (IVSS) can automatically analyze the content of the surveillance image (SI) and reduce the burden of the manual labour. However, the SIs may suffer quality degradations in the procedure of acquisition, compression, and transmission, which makes IVSS hard to understand the content of SIs. In this paper, we first conduct an example experiment (i.e. the face detection task) to demonstrate that the quality of the SIs has a crucial impact on the performance of the IVSS, and then propose a saliency-based deep neural network for the blind quality assessment of the SIs, which helps IVSS to filter the low-quality SIs and improve the detection and recognition performance. Specifically, we first compute the saliency map of the SI to select the most salient local region since the salient regions usually contain rich semantic information for machine vision and thus have a great impact on the overall quality of the SIs. Next, the convolutional neural network (CNN) is adopted to extract quality-aware features for the whole image and local region, which are then mapped into the global and local quality scores through the fully connected (FC) network respectively. Finally, the overall quality score is computed as the weighted sum of the global and local quality scores. Experimental results on the SI quality database (SIQD) show that the proposed method outperforms all compared state-of-the-art BIQA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sreenu, G., Durai, M.S.: Intelligent video surveillance: a review through deep learning techniques for crowd analysis. J. Big Data 6(1), 1–27 (2019)

    Article  Google Scholar 

  2. Zhu, W., Zhai, G., Yao, C., Yang, X.: SIQD: surveillance image quality database and performance evaluation for objective algorithms. In: 2018 IEEE Visual Communications and Image Processing (VCIP). pp. 1–4. IEEE (2018)

    Google Scholar 

  3. Leszczuk, M., Romaniak, P., Janowski, L.: Quality assessment in video surveillance. In: Recent Developments in Video Surveillance. IntechOpen (2012)

    Google Scholar 

  4. Aqqa, M., Mantini, P., Shah, S.K.: Understanding how video quality affects object detection algorithms. In: VISIGRAPP (5: VISAPP), pp. 96–104 (2019)

    Google Scholar 

  5. Sun, W., Min, X., Zhai, G., Ma, S.: Blind quality assessment for in-the-wild images via hierarchical feature fusion and iterative mixed database training. arXiv preprint arXiv:2105.14550 (2021)

  6. Sun, W., Min, X., Zhai, G., Gu, K., Duan, H., Ma, S.: MC360IQA: a multi-channel CNN for blind 360-degree image quality assessment. IEEE J. Sel. Top. Signal Proces. 14(1), 64–77 (2019)

    Article  Google Scholar 

  7. Zhai, G., Sun, W., Min, X., Zhou, J.: Perceptual quality assessment of low-light image enhancement. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(4), 1–24 (2021)

    Article  Google Scholar 

  8. Zhang, Z., et al.: A no-reference deep learning quality assessment method for super-resolution images based on frequency maps. arXiv preprint arXiv:2206.04289 (2022)

  9. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, Y., Ma, K., Wang, Z., Lin, W., Fang, Z., Zhai, G.: No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Process. Lett. 22(7), 838–842 (2014)

    Google Scholar 

  11. Zhang, Z., et al.: A no-reference evaluation metric for low-light image enhancement. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)

    Google Scholar 

  12. Zhang, Z., Sun, W., Min, X., Wang, T., Lu, W., Zhai, G.: A full-reference quality assessment metric for fine-grained compressed images. In: 2021 International Conference on Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2021)

    Google Scholar 

  13. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2014)

    Article  Google Scholar 

  14. Zhai, G., Wu, X., Yang, X., Lin, W., Zhang, W.: A psychovisual quality metric in free-energy principle. IEEE Trans. Image Process. 21(1), 41–52 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Min, X., Zhai, G., Gu, K., Liu, Y., Yang, X.: Blind image quality estimation via distortion aggravation. IEEE Trans. Broadcast. 64(2), 508–517 (2018)

    Article  Google Scholar 

  16. Sun, W., Wang, T., Min, X., Yi, F., Zhai, G.: Deep learning based full-reference and no-reference quality assessment models for compressed UGC videos. In: 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2021)

    Google Scholar 

  17. Wang, T., Sun, W., Min, X., Lu, W., Zhang, Z., Zhai, G.: A multi-dimensional aesthetic quality assessment model for mobile game images. In: 2021 International Conference on Visual Communications and Image Processing (VCIP), pp. 1–5. IEEE (2021)

    Google Scholar 

  18. Lu, W., et al.: A CNN-based quality assessment method for pseudo 4K contents. In: Zhai, G., Zhou, J., Yang, H., An, P., Yang, X. (eds.) IFTC 2021. Communications in Computer and Information Science, vol. 1560, pp. 164–176. Springer, Cham (2022). https://doi.org/10.1007/978-981-19-2266-4_13

    Chapter  Google Scholar 

  19. Sun, W., Min, X., Lu, W., Zhai, G.: A deep learning based no-reference quality assessment model for UGC videos. arXiv preprint arXiv:2204.14047 (2022)

  20. Reddy, N., Jain, S., Yarlagadda, P., Gandhi, V.: Tidying deep saliency prediction architectures. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10241–10247. IEEE (2020)

    Google Scholar 

  21. Jiang, M., Huang, S., Duan, J., Zhao, Q.: Salicon: saliency in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1072–1080 (2015)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  24. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  25. Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective and objective quality assessment of video. IEEE Trans. Image Process. 19(6), 1427–1441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1098–1105. IEEE (2012)

    Google Scholar 

  27. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J., Ye, P., Li, Q., Du, H., Liu, Y., Doermann, D.: Blind image quality assessment based on high order statistics aggregation. IEEE Trans. Image Process. 25(9), 4444–4457 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, D., Jiang, T., Lin, W., Jiang, M.: Which has better visual quality: the clear blue sky or a blurry animal? IEEE Trans. Multimedia 21(5), 1221–1234 (2018)

    Article  Google Scholar 

  31. Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 30(1), 36–47 (2018)

    Article  Google Scholar 

  32. Su, S., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3667–3676 (2020)

    Google Scholar 

  33. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtao Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, W. et al. (2022). Blind Surveillance Image Quality Assessment via Deep Neural Network Combined with the Visual Saliency. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics