Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Blur-Robust Face Recognition via Transformation Learning

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9010))

Included in the following conference series:

  • 1430 Accesses

Abstract

This paper introduces a new method for recognizing faces degraded by blur using transformation learning on the image feature. The basic idea is to transform both the sharp images and blurred images to a same feature subspace by the method of multidimensional scaling. Different from the method of finding blur-invariant descriptors, our method learns the transformation which both preserves the manifold structure of the original shape images and, at the same time, enhances the class separability, resulting in a wide applications to various descriptors. Furthermore, we combine our method with subspace-based point spread function (PSF) estimation method to handle cases of unknown blur degree, by applying the feature transformation corresponding to the best matched PSF, where the transformation for each PSF is learned in the training stage. Experimental results on the FERET database show the proposed method achieve comparable performance against the state-of-the-art blur-invariant face recognition methods, such as LPQ and FADEIN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, W., Hu, J., Guo, J.: Extended src: Undersampled face recognition via intraclass variant dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1864–1870 (2012)

    Article  Google Scholar 

  2. Deng, W., Hu, J., Guo, J., Cai, W., Feng, D.: Robust, accurate and efficient face recognition from a single training image: a uniform pursuit approach. Pattern Recogn. 43, 1748–1762 (2010)

    Article  MATH  Google Scholar 

  3. Deng, W., Hu, J., Zhou, X., Guo, J.: Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning. Pattern Recogn. 47, 3738–3749 (2014)

    Article  Google Scholar 

  4. Deng, W., Hu, J., Lu, J., Guo, J.: Transform-invariant pca: a unified approach to fully automatic face alignment, representation, and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1275–1284 (2014)

    Article  Google Scholar 

  5. Deng, W., Hu, J., Guo, J., Cai, W., Feng, D.: Emulating biological strategies for uncontrolled face recognition. Pattern Recogn. 43, 2210–2223 (2010)

    Article  MATH  Google Scholar 

  6. Nishiyama, M., Hadid, A., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference using subspace analysis for recognition of blurred faces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 838–845 (2011)

    Article  Google Scholar 

  7. Stainvas, I., Intrator, N., Moshaiov, A.: Blurre face recognition via a hybrid network architecture. Pattern Recogn. 2, 805–808 (2000)

    Google Scholar 

  8. Cannon, M.: Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoust. Speech Signal Process. 24, 58–63 (1976)

    Article  Google Scholar 

  9. Katsaggelos, A.K.: Digital image restoration. Springer Publishing Company (2012, Incorporated)

    Google Scholar 

  10. Kimia, B.B., Zucker, S.W.: Analytic inverse of discrete gaussian blur. Opt. Eng. 32, 166–176 (1993)

    Article  Google Scholar 

  11. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Progressive inter-scale and intra-scale non-blind image deconvolution. In: ACM Transactions on Graphics (TOG), vol. 27, p. 74. ACM (2008)

    Google Scholar 

  12. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30, 228–242 (2008)

    Article  Google Scholar 

  13. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 787–794. ACM (2006)

    Google Scholar 

  14. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (2011)

    Google Scholar 

  15. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13, 43–64 (1996)

    Article  Google Scholar 

  16. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  17. Hu, H., de Hann, G.: Low cost robust blur estimator. In: 2006 IEEE International Conference on Image Processing, pp. 617–620. IEEE (2006)

    Google Scholar 

  18. Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20, 699–716 (1998)

    Article  Google Scholar 

  19. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: 2002 International Conference on Image Processing, Proceedings, vol. 3, pp. III–57. IEEE (2002)

    Google Scholar 

  20. Rooms, F., Pizurica, A., Philips, W.: Estimating image blur in the wavelet domain. In: IEEE International Conference on Acoustics Speech and Signal Processing 1999, vol. 4, pp. 4190–4190. IEEE (2002)

    Google Scholar 

  21. Tong, H., Li, M., Zhang, H., Zhang, C.: Blur detection for digital images using wavelet transform. In: 2004 IEEE International Conference on Multimedia and Expo, ICME 2004, vol. 1, pp. 17–20. IEEE (2004)

    Google Scholar 

  22. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. In: ACM Transactions on Graphics (TOG), vol. 26, p. 1. ACM (2007)

    Google Scholar 

  23. Ancuti, C., Ancuti, C.O., Bekaert, P.: Deblurring by matching. Computer Graphics Forum 28, 619–628 (2009). Wiley Online Library

    Article  Google Scholar 

  24. Nishiyama, M., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference to improve recognition of blurred faces. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1115–1122. IEEE (2009)

    Google Scholar 

  25. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  Google Scholar 

  26. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  Google Scholar 

  27. Deng, W., Liu, Y., Hu, J., Guo, J.: The small sample size problem of ica: a comparative study and analysis. Pattern Recogn. 45, 4438–4450 (2012)

    Article  MATH  Google Scholar 

  28. Deng, W., Hu, J., Guo, J., Zhang, H., Zhang, C.: Comments on “globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics”. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1503–1504 (2008)

    Article  Google Scholar 

  29. Deng, W., Hu, J., Guo, J.: In defense of sparsity based face recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 399–406. IEEE (2013)

    Google Scholar 

  30. Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces using local phase quantization. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  31. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Gopalan, R., Taheri, S., Turaga, P., Chellappa, R.: A blur-robust descriptor with applications to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1220–1226 (2012)

    Article  Google Scholar 

  33. Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)

    Google Scholar 

  34. Webb, A.R.: Multidimensional scaling by iterative majorization using radial basis functions. Pattern Recogn. 28, 753–759 (1995)

    Article  Google Scholar 

  35. Biswas, S., Aggarwal, G., Flynn, P.J., Bowyer, K.W.: Pose-robust recognition of low-resolution face images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 3037–3049 (2013)

    Article  Google Scholar 

  36. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition 2002, Proceedings, pp. 46–51. IEEE (2002)

    Google Scholar 

  37. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially sponsored by National Natural Science Foundation of China (NSFC) under Grant No. 61375031, No. 61471048, and No. 61273217. This work was also supported by the Fundamental Research Funds for the Central Universities, Beijing Higher Education Young Elite Teacher Project, and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, J., Zhang, C., Hu, J., Deng, W. (2015). Blur-Robust Face Recognition via Transformation Learning. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16634-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16633-9

  • Online ISBN: 978-3-319-16634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics