Abstract
This paper introduces a new method for recognizing faces degraded by blur using transformation learning on the image feature. The basic idea is to transform both the sharp images and blurred images to a same feature subspace by the method of multidimensional scaling. Different from the method of finding blur-invariant descriptors, our method learns the transformation which both preserves the manifold structure of the original shape images and, at the same time, enhances the class separability, resulting in a wide applications to various descriptors. Furthermore, we combine our method with subspace-based point spread function (PSF) estimation method to handle cases of unknown blur degree, by applying the feature transformation corresponding to the best matched PSF, where the transformation for each PSF is learned in the training stage. Experimental results on the FERET database show the proposed method achieve comparable performance against the state-of-the-art blur-invariant face recognition methods, such as LPQ and FADEIN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deng, W., Hu, J., Guo, J.: Extended src: Undersampled face recognition via intraclass variant dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1864–1870 (2012)
Deng, W., Hu, J., Guo, J., Cai, W., Feng, D.: Robust, accurate and efficient face recognition from a single training image: a uniform pursuit approach. Pattern Recogn. 43, 1748–1762 (2010)
Deng, W., Hu, J., Zhou, X., Guo, J.: Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning. Pattern Recogn. 47, 3738–3749 (2014)
Deng, W., Hu, J., Lu, J., Guo, J.: Transform-invariant pca: a unified approach to fully automatic face alignment, representation, and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1275–1284 (2014)
Deng, W., Hu, J., Guo, J., Cai, W., Feng, D.: Emulating biological strategies for uncontrolled face recognition. Pattern Recogn. 43, 2210–2223 (2010)
Nishiyama, M., Hadid, A., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference using subspace analysis for recognition of blurred faces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 838–845 (2011)
Stainvas, I., Intrator, N., Moshaiov, A.: Blurre face recognition via a hybrid network architecture. Pattern Recogn. 2, 805–808 (2000)
Cannon, M.: Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoust. Speech Signal Process. 24, 58–63 (1976)
Katsaggelos, A.K.: Digital image restoration. Springer Publishing Company (2012, Incorporated)
Kimia, B.B., Zucker, S.W.: Analytic inverse of discrete gaussian blur. Opt. Eng. 32, 166–176 (1993)
Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Progressive inter-scale and intra-scale non-blind image deconvolution. In: ACM Transactions on Graphics (TOG), vol. 27, p. 74. ACM (2008)
Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30, 228–242 (2008)
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 787–794. ACM (2006)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (2011)
Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13, 43–64 (1996)
Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)
Hu, H., de Hann, G.: Low cost robust blur estimator. In: 2006 IEEE International Conference on Image Processing, pp. 617–620. IEEE (2006)
Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20, 699–716 (1998)
Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: 2002 International Conference on Image Processing, Proceedings, vol. 3, pp. III–57. IEEE (2002)
Rooms, F., Pizurica, A., Philips, W.: Estimating image blur in the wavelet domain. In: IEEE International Conference on Acoustics Speech and Signal Processing 1999, vol. 4, pp. 4190–4190. IEEE (2002)
Tong, H., Li, M., Zhang, H., Zhang, C.: Blur detection for digital images using wavelet transform. In: 2004 IEEE International Conference on Multimedia and Expo, ICME 2004, vol. 1, pp. 17–20. IEEE (2004)
Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. In: ACM Transactions on Graphics (TOG), vol. 26, p. 1. ACM (2007)
Ancuti, C., Ancuti, C.O., Bekaert, P.: Deblurring by matching. Computer Graphics Forum 28, 619–628 (2009). Wiley Online Library
Nishiyama, M., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference to improve recognition of blurred faces. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1115–1122. IEEE (2009)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)
Deng, W., Liu, Y., Hu, J., Guo, J.: The small sample size problem of ica: a comparative study and analysis. Pattern Recogn. 45, 4438–4450 (2012)
Deng, W., Hu, J., Guo, J., Zhang, H., Zhang, C.: Comments on “globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics”. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1503–1504 (2008)
Deng, W., Hu, J., Guo, J.: In defense of sparsity based face recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 399–406. IEEE (2013)
Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces using local phase quantization. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008)
Gopalan, R., Taheri, S., Turaga, P., Chellappa, R.: A blur-robust descriptor with applications to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1220–1226 (2012)
Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)
Webb, A.R.: Multidimensional scaling by iterative majorization using radial basis functions. Pattern Recogn. 28, 753–759 (1995)
Biswas, S., Aggarwal, G., Flynn, P.J., Bowyer, K.W.: Pose-robust recognition of low-resolution face images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 3037–3049 (2013)
Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition 2002, Proceedings, pp. 46–51. IEEE (2002)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)
Acknowledgement
This work was partially sponsored by National Natural Science Foundation of China (NSFC) under Grant No. 61375031, No. 61471048, and No. 61273217. This work was also supported by the Fundamental Research Funds for the Central Universities, Beijing Higher Education Young Elite Teacher Project, and the Program for New Century Excellent Talents in University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, J., Zhang, C., Hu, J., Deng, W. (2015). Blur-Robust Face Recognition via Transformation Learning. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9010. Springer, Cham. https://doi.org/10.1007/978-3-319-16634-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-16634-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16633-9
Online ISBN: 978-3-319-16634-6
eBook Packages: Computer ScienceComputer Science (R0)