Abstract
We review some recent approaches to estimate discrete Gaussian and mean curvatures for triangulated surfaces, and discuss their characteristics. We focus our attention on concentrated curvature which is generally used to estimate Gaussian curvature. We present a result that shows that concentrated curvature can also be used to estimate mean curvature and hence principal curvatures. This makes concentrated curvature one of the fundamental notions in discrete computational geometry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akleman, E., Chen, J.: Practical polygonal mesh modeling with discrete Gaussian-Bonnet theorem. In: Proceedings of Geometry, Modeling and Processing (2006)
Alboul, L., Echeverria, G., Rodrigues, M.A.: Discrete curvatures and Gauss maps for polyhedral surfaces. In: Workshop on Computational Geometry, The Netherlands (2005)
Aleksandrov, P.S.: Topologia Combinatoria. Edizioni Scientifiche Einaudi, Torino (1957)
Borrelli, V., Cazals, F., Morvan, J.-M.: On the angular defect of triangulations and the pointwise approximation of curvatures. Computer Aided Geometric Design 20(6), 319–341 (2003)
Do Carno, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., Englewood Cliffs (1976)
Chen, X., Schmitt, F.: Intrinsic Surface Properties from Surface Triangulation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 739–743. Springer, Heidelberg (1992)
Csakany, P., Wallace, A.M.: Computation of local differential properties on irregular meshes. In: IMA Conference on Mathematics of Surfaces (NIPS), vol. 1, pp. 19–33 (2000)
Dyn, N., Hormann, K., Kim, S.-J., Levin, D.: Optimizing 3D triangulations using discrete curvature analysis. In: Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 135–146 (2001)
Garimella, R.V., Swartz, B.K.: Curvature estimation for unstructured triangulations of surfaces. Technical report, Los Alamos National Laboratory LA-03-8240 (2003)
Gatzke, T.D., Grimm, C.M.: Estimating curvature on triangular meshes. International Journal on Shape Modeling 12, 1–29 (2006)
Hahmann, S., Belayev, A., Busé, L., Elber, G., Mourrain, B., Rössl, C.: Shape Interrogation. In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring (Mathematics+Visualization) (2009)
Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics 5(4), 308–321 (1999)
Meek, D.S., Walton, D.J.: On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Computer Aided Geometric Design 17, 521–543 (2000)
Mesmoudi, M.M., Danovaro, E., De Floriani, L., Port, U.: Surface segmentation through concentrated curvature. In: International Conference on Image and Pattern Processing (ICIAP), pp. 671–676. IEEE Computer Society (2007)
Mesmoudi, M.M., De Floriani, L., Magillo, P.: Ccurvatures as discrete curvature estimators. Technical Report DISI-TR-11-12, DISI, University of Genova (2011)
Mesmoudi, M.M., De Floriani, L., Magillo, P.: Discrete Distortion for Surface Meshes. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 652–661. Springer, Heidelberg (2009)
Mesmoudi, M.M., De Floriani, L., Magillo, P.: A geometric approach to curvature estimation on triangulated 3D shapes. In: International Conference on Computer Graphics Theory and Applications (GRAPP), May 17-21, pp. 90–95 (2010)
Mesmoudi, M.M., De Floriani, L., Port, U.: Discrete distortion in triangulated 3-manifolds. Computer Graphics Forum 27(5), 1333–1340 (2008)
Meyer, M., Desbrun, M., Schroder, M., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Proceedings VisMath 2002, pp. 35–57 (2002)
Milnor, J.: Morse Theory. Princeton University Press, New Jersey (1963)
Page, D.L., Koschan, A., Abidi, A.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE Computer Society (2003)
Stokely, E.M., Wu, S.Y.N.A.: Surface parametrization and curvature measurement of arbitrary 3D objects: five practical methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 833–839 (1992)
Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of gaussian and mean curvatures estimation methods on triangular meshes. In: IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 739–743 (2003)
Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of ICCV 1995, pp. 902–907 (1995)
Troyanov, M.: Les surfaces Euclidiennes à singularités coniques. L’enseignement Mathématique 32, 79–94 (1986)
Watanabe, K., Belayev, A.G.: Detection of salient curvature features on polygonal surfaces. Computer Graphics Forum, Eurographics 20(3), 385–392 (2001)
Xu, G.: Convergence analysis of a discretization scheme for gaussian curvature over triangular surfaces. Computer Aided Geometric Design 23(2), 193–207 (2006)
Xu, Z., Xu, G., Sun, J.: Convergence analysis of discrete differential geometry operators over surfaces. Technical report, Dept. of Computer Science, Tsinghua University, Beijing, China (2005), www.cc.ac.cn/05research_report/0505.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mesmoudi, M.M., De Floriani, L., Magillo, P. (2012). Discrete Curvature Estimation Methods for Triangulated Surfaces. In: Köthe, U., Montanvert, A., Soille, P. (eds) Applications of Discrete Geometry and Mathematical Morphology. WADGMM 2010. Lecture Notes in Computer Science, vol 7346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32313-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-32313-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32312-6
Online ISBN: 978-3-642-32313-3
eBook Packages: Computer ScienceComputer Science (R0)