Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Discrete Curvature Estimation Methods for Triangulated Surfaces

  • Conference paper
Applications of Discrete Geometry and Mathematical Morphology (WADGMM 2010)

Abstract

We review some recent approaches to estimate discrete Gaussian and mean curvatures for triangulated surfaces, and discuss their characteristics. We focus our attention on concentrated curvature which is generally used to estimate Gaussian curvature. We present a result that shows that concentrated curvature can also be used to estimate mean curvature and hence principal curvatures. This makes concentrated curvature one of the fundamental notions in discrete computational geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akleman, E., Chen, J.: Practical polygonal mesh modeling with discrete Gaussian-Bonnet theorem. In: Proceedings of Geometry, Modeling and Processing (2006)

    Google Scholar 

  2. Alboul, L., Echeverria, G., Rodrigues, M.A.: Discrete curvatures and Gauss maps for polyhedral surfaces. In: Workshop on Computational Geometry, The Netherlands (2005)

    Google Scholar 

  3. Aleksandrov, P.S.: Topologia Combinatoria. Edizioni Scientifiche Einaudi, Torino (1957)

    MATH  Google Scholar 

  4. Borrelli, V., Cazals, F., Morvan, J.-M.: On the angular defect of triangulations and the pointwise approximation of curvatures. Computer Aided Geometric Design 20(6), 319–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Do Carno, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., Englewood Cliffs (1976)

    Google Scholar 

  6. Chen, X., Schmitt, F.: Intrinsic Surface Properties from Surface Triangulation. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 739–743. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  7. Csakany, P., Wallace, A.M.: Computation of local differential properties on irregular meshes. In: IMA Conference on Mathematics of Surfaces (NIPS), vol. 1, pp. 19–33 (2000)

    Google Scholar 

  8. Dyn, N., Hormann, K., Kim, S.-J., Levin, D.: Optimizing 3D triangulations using discrete curvature analysis. In: Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 135–146 (2001)

    Google Scholar 

  9. Garimella, R.V., Swartz, B.K.: Curvature estimation for unstructured triangulations of surfaces. Technical report, Los Alamos National Laboratory LA-03-8240 (2003)

    Google Scholar 

  10. Gatzke, T.D., Grimm, C.M.: Estimating curvature on triangular meshes. International Journal on Shape Modeling 12, 1–29 (2006)

    Article  MATH  Google Scholar 

  11. Hahmann, S., Belayev, A., Busé, L., Elber, G., Mourrain, B., Rössl, C.: Shape Interrogation. In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring (Mathematics+Visualization) (2009)

    Google Scholar 

  12. Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics 5(4), 308–321 (1999)

    Article  Google Scholar 

  13. Meek, D.S., Walton, D.J.: On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Computer Aided Geometric Design 17, 521–543 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mesmoudi, M.M., Danovaro, E., De Floriani, L., Port, U.: Surface segmentation through concentrated curvature. In: International Conference on Image and Pattern Processing (ICIAP), pp. 671–676. IEEE Computer Society (2007)

    Google Scholar 

  15. Mesmoudi, M.M., De Floriani, L., Magillo, P.: Ccurvatures as discrete curvature estimators. Technical Report DISI-TR-11-12, DISI, University of Genova (2011)

    Google Scholar 

  16. Mesmoudi, M.M., De Floriani, L., Magillo, P.: Discrete Distortion for Surface Meshes. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 652–661. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Mesmoudi, M.M., De Floriani, L., Magillo, P.: A geometric approach to curvature estimation on triangulated 3D shapes. In: International Conference on Computer Graphics Theory and Applications (GRAPP), May 17-21, pp. 90–95 (2010)

    Google Scholar 

  18. Mesmoudi, M.M., De Floriani, L., Port, U.: Discrete distortion in triangulated 3-manifolds. Computer Graphics Forum 27(5), 1333–1340 (2008)

    Article  Google Scholar 

  19. Meyer, M., Desbrun, M., Schroder, M., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Proceedings VisMath 2002, pp. 35–57 (2002)

    Google Scholar 

  20. Milnor, J.: Morse Theory. Princeton University Press, New Jersey (1963)

    MATH  Google Scholar 

  21. Page, D.L., Koschan, A., Abidi, A.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE Computer Society (2003)

    Google Scholar 

  22. Stokely, E.M., Wu, S.Y.N.A.: Surface parametrization and curvature measurement of arbitrary 3D objects: five practical methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 833–839 (1992)

    Google Scholar 

  23. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of gaussian and mean curvatures estimation methods on triangular meshes. In: IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 739–743 (2003)

    Google Scholar 

  24. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of ICCV 1995, pp. 902–907 (1995)

    Google Scholar 

  25. Troyanov, M.: Les surfaces Euclidiennes à singularités coniques. L’enseignement Mathématique 32, 79–94 (1986)

    MathSciNet  MATH  Google Scholar 

  26. Watanabe, K., Belayev, A.G.: Detection of salient curvature features on polygonal surfaces. Computer Graphics Forum, Eurographics 20(3), 385–392 (2001)

    Article  Google Scholar 

  27. Xu, G.: Convergence analysis of a discretization scheme for gaussian curvature over triangular surfaces. Computer Aided Geometric Design 23(2), 193–207 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, Z., Xu, G., Sun, J.: Convergence analysis of discrete differential geometry operators over surfaces. Technical report, Dept. of Computer Science, Tsinghua University, Beijing, China (2005), www.cc.ac.cn/05research_report/0505.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mesmoudi, M.M., De Floriani, L., Magillo, P. (2012). Discrete Curvature Estimation Methods for Triangulated Surfaces. In: Köthe, U., Montanvert, A., Soille, P. (eds) Applications of Discrete Geometry and Mathematical Morphology. WADGMM 2010. Lecture Notes in Computer Science, vol 7346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32313-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32313-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32312-6

  • Online ISBN: 978-3-642-32313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics