Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Online Process Discovery to Detect Concept Drifts in LTL-Based Declarative Process Models

  • Conference paper
On the Move to Meaningful Internet Systems: OTM 2013 Conferences (OTM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8185))

Abstract

Today’s business processes are often controlled and supported by information systems. These systems record real-time information about business processes during their executions. This enables the analysis at runtime of the process behavior. However, many modern systems produce “big data”, i.e., collections of data sets so large and complex that it becomes impossible to store and process all of them. Moreover, few processes are in steady-state and due to changing circumstances processes evolve and systems need to adapt continuously. In this paper, we present a novel framework for the discovery of LTL-based declarative process models from streaming event data in settings where it is impossible to store all events over an extended period or where processes evolve while being analyzed. The framework continuously updates a set of valid business constraints based on the events occurred in the event stream. In addition, our approach is able to provide meaningful information about the most significant concept drifts, i.e., changes occurring in a process during its execution. We report about experimental results obtained using logs pertaining the health insurance claims handling in a travel agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 3TU Data Center. BPI Challenge 2011 Event Log (2011), doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

    Google Scholar 

  2. Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Systems, vol. 31. Springer, US (2007)

    Book  Google Scholar 

  3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis Learning Examples. Journal of Machine Learning Research 11, 1601–1604 (2010)

    Google Scholar 

  4. Jagadeesh Chandra Bose, R.P.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics. PhD thesis, Eindhoven University of Technology (2012)

    Google Scholar 

  5. Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)

    Google Scholar 

  6. Burattin, A.: Applicability of Process Mining Techniques in Business Environments. PhD Thesis, University of Bologna (2013)

    Google Scholar 

  7. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics Miners for Streaming Event Data. ArXiv CoRR (December 2012)

    Google Scholar 

  8. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting Inductive Logic Programming Techniques for Declarative Process Mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) TOPNOC II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)

    Google Scholar 

  9. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. The MIT Press (September 2001)

    Google Scholar 

  10. Di Ciccio, C., Mecella, M.: Mining constraints for artful processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 11–23. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: a Review. ACM Sigmod Record 34(2), 18–26 (2005)

    Article  Google Scholar 

  12. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. JMLR 10, 1305–1340 (2009)

    MATH  MathSciNet  Google Scholar 

  13. Golab, L., Tamer Özsu, M.: Issues in Data Stream Management. ACM SIGMOD Record 32(2), 5–14 (2003)

    Article  Google Scholar 

  14. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. Int. Journal on Software Tools for Technology Transfer, 224–233 (2003)

    Google Scholar 

  15. Maggi, F.M., Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Maggi, F.M., Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: A knowledge-based integrated approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: Proc. of CIDM, pp. 192–199. IEEE (2011)

    Google Scholar 

  18. Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: VLDB, pp. 346–357 (2002)

    Google Scholar 

  19. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: An empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Rozinat, A., Alves de Medeiros, A.K., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The need for a process mining evaluation framework in research and practice: position paper. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008)

    Google Scholar 

  21. Schweikardt, N.: Short-Entry on One-Pass Algorithms. In: Encyclopedia of Database Systems, pp. 1948–1949 (2009)

    Google Scholar 

  22. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process model repositories. Computers in Industry 63(2), 98–111 (2012)

    Article  Google Scholar 

  24. Steeman, W.: Bpi challenge 2013, incidents (2013)

    Google Scholar 

  25. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)

    Google Scholar 

  26. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D, 99–113 (2009)

    Google Scholar 

  27. van Dongen, B.F.: Bpi challenge 2012 (2012)

    Google Scholar 

  28. Daelemans, W., Goethals, B., Morik, K. (eds.): ECML PKDD 2008, Part I. LNAI (LNAI), vol. 5211, pp. 672–687. Springer, Heidelberg (2008)

    Book  Google Scholar 

  29. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Widmer, G., Kubat, M.: Learning in the Presence of Concept Drift and Hidden Contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A. (2013). Online Process Discovery to Detect Concept Drifts in LTL-Based Declarative Process Models. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2013 Conferences. OTM 2013. Lecture Notes in Computer Science, vol 8185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41030-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41030-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41029-1

  • Online ISBN: 978-3-642-41030-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics