Abstract
Today’s business processes are often controlled and supported by information systems. These systems record real-time information about business processes during their executions. This enables the analysis at runtime of the process behavior. However, many modern systems produce “big data”, i.e., collections of data sets so large and complex that it becomes impossible to store and process all of them. Moreover, few processes are in steady-state and due to changing circumstances processes evolve and systems need to adapt continuously. In this paper, we present a novel framework for the discovery of LTL-based declarative process models from streaming event data in settings where it is impossible to store all events over an extended period or where processes evolve while being analyzed. The framework continuously updates a set of valid business constraints based on the events occurred in the event stream. In addition, our approach is able to provide meaningful information about the most significant concept drifts, i.e., changes occurring in a process during its execution. We report about experimental results obtained using logs pertaining the health insurance claims handling in a travel agency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
3TU Data Center. BPI Challenge 2011 Event Log (2011), doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Systems, vol. 31. Springer, US (2007)
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis Learning Examples. Journal of Machine Learning Research 11, 1601–1604 (2010)
Jagadeesh Chandra Bose, R.P.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics. PhD thesis, Eindhoven University of Technology (2012)
Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)
Burattin, A.: Applicability of Process Mining Techniques in Business Environments. PhD Thesis, University of Bologna (2013)
Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics Miners for Streaming Event Data. ArXiv CoRR (December 2012)
Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting Inductive Logic Programming Techniques for Declarative Process Mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) TOPNOC II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)
Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. The MIT Press (September 2001)
Di Ciccio, C., Mecella, M.: Mining constraints for artful processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 11–23. Springer, Heidelberg (2012)
Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: a Review. ACM Sigmod Record 34(2), 18–26 (2005)
Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. JMLR 10, 1305–1340 (2009)
Golab, L., Tamer Özsu, M.: Issues in Data Stream Management. ACM SIGMOD Record 32(2), 5–14 (2003)
Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. Int. Journal on Software Tools for Technology Transfer, 224–233 (2003)
Maggi, F.M., Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)
Maggi, F.M., Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: A knowledge-based integrated approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013)
Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: Proc. of CIDM, pp. 192–199. IEEE (2011)
Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: VLDB, pp. 346–357 (2002)
Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: An empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)
Rozinat, A., Alves de Medeiros, A.K., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The need for a process mining evaluation framework in research and practice: position paper. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008)
Schweikardt, N.: Short-Entry on One-Pass Algorithms. In: Encyclopedia of Database Systems, pp. 1948–1949 (2009)
Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)
Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process model repositories. Computers in Industry 63(2), 98–111 (2012)
Steeman, W.: Bpi challenge 2013, incidents (2013)
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)
van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between Flexibility and Support. Computer Science - R&D, 99–113 (2009)
van Dongen, B.F.: Bpi challenge 2012 (2012)
Daelemans, W., Goethals, B., Morik, K. (eds.): ECML PKDD 2008, Part I. LNAI (LNAI), vol. 5211, pp. 672–687. Springer, Heidelberg (2008)
Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)
Widmer, G., Kubat, M.: Learning in the Presence of Concept Drift and Hidden Contexts. Machine Learning 23(1), 69–101 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A. (2013). Online Process Discovery to Detect Concept Drifts in LTL-Based Declarative Process Models. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2013 Conferences. OTM 2013. Lecture Notes in Computer Science, vol 8185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41030-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-41030-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41029-1
Online ISBN: 978-3-642-41030-7
eBook Packages: Computer ScienceComputer Science (R0)