Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 11k Accesses

Abstract

The chapter is concerned with linear programming problems whose input data may be fuzzy while the values of variables are always real numbers. We propose a rather general approach to these types of problems, and present recent results for problems in which the notions of feasibility and optimality are based on the fuzzy relations of possibility and necessity. Special attention is devoted to the weak and strong duality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FLP:

fuzzy linear programming

References

  1. R.E. Bellman, L.E. Zadeh: Decision making in a fuzzy environment, Manag. Sci. 17, B141–B164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. H.-J. Zimmermann: Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst. 1, 45–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Dubois: The role of fuzzy sets in decision sciences: Old techniques and new directions, Fuzzy Sets Syst. 184, 3–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Stanciulescu, P. Fortemps, M. Install, V. Wertz: Multiobjective fuzzy linear programming problems with fuzzy decision variables, Eur. J. Oper. Res. 149, 654–675 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Dubois, H. Prade: Ranking fuzzy numbers in the setting of possibility theory, Inf. Sci. 30, 183–224 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Ramík: Duality in fuzzy linear programming: Some new concepts and results, Fuzzy Optim. Decis. Mak. 4, 25–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Ramík: Duality in fuzzy linear programming with possibility and necessity relations, Fuzzy Sets Syst. 157, 1283–1302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.L. Soyster: A duality theory for convex programming with set-inclusive constraints, Oper. Res. 22, 892–898 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. D.J. Thuente: Duality theory for generalized linear programs with computational methods, Oper. Res. 28, 1005–1011 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. H.W. Kuhn: Nonlinear programming -- A historical view, SIAM-AMS 9, 1–26 (1976)

    MathSciNet  MATH  Google Scholar 

  11. J. Ramík, M. Vlach: Generalized Concavity in Optimization and Decision Making (Kluwer, Dordrecht 2001)

    MATH  Google Scholar 

  12. D.A. Ralescu: A generalization of the representation theorem, Fuzzy Sets Syst. 51, 309–311 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Ramík, M. Vlach: A non-controversial definition of fuzzy sets, Lect. Notes Comput. Sci. 3135, 201–207 (2004)

    Article  MATH  Google Scholar 

  14. W. Rödder, H.-J. Zimmermann: Duality in Fuzzy Linear Programming, Extremal Methods and System Analysis (Springer, New York 1980) pp. 415–429

    Book  Google Scholar 

  15. H. Rommelfanger, R. Slowinski: Fuzzy linear programming with single or multiple objective functions, Handb. Fuzzy Sets Ser. 1, 179–213 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.-C. Wu: Duality theory in fuzzy linear programming problems with fuzzy coefficients, Fuzzy Optim. Decis. Mak. 2, 61–73 (2003)

    Article  MathSciNet  Google Scholar 

  17. C.R. Bector, C. Chandra: On duality in linear programming under fuzzy environment, Fuzzy Sets Syst. 125, 317–325 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.L. Verdegay: A dual approach to solve the fuzzy linear programming problem, Fuzzy Sets Syst. 14, 131–141 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Inuiguchi, H. Ichihashi, Y. Kume: Some properties of extended fuzzy preference relations using modalities, Inf. Sci. 61, 187–209 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Inuiguchi, J. Ramík, T. Tanino, M. Vlach: Satisficing solutions and duality in interval and fuzzy linear programming, Fuzzy Sets Syst. 135, 151–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Hamacher, H. Lieberling, H.-J. Zimmermann: Sensitivity analysis in fuzzy linear programming, Fuzzy Sets Syst. 1, 269–281 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Ramík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramík, J., Vlach, M. (2015). Fuzzy Linear Programming and Duality. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics