Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design of a Four-Person Voter Circuit Based on Memristor Logic

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1160))

  • 937 Accesses

Abstract

The development of traditional CMOS-based logic circuits in terms of speed and energy consumption is approaching the limit. Memristor is a kind of bio-inspired hardware with special structure, which has the advantages of simple structure, low power consumption and easy integration. It has a good application prospect in high performance memory and neural networks. The invention of memristors provides a new way to develop more efficient logic circuits. In this paper, the memristor-based logic gates are employed to implement complex logic functions. By changing the polarity of two parallel memristors, the OR logic and AND logic can be implemented separately. By using these basic logics, adders and comparators are performed, and further, a four-person voter is designed. The feasibility of a four-person voter based on memristor logic is verified by theoretical analysis and Pspice simulation. The memristor logic circuit provides the basis for the building of more complex circuits in the future. It also provides support for the development and application of bio-inspired hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008)

    Article  Google Scholar 

  3. Wang, Y., Cui, J., You, X., Huang, S., Yao, R.: Theory and technology development of bio-inspired hardware. Chin. Space Sci. Technol. 24(6), 32–42 (2004)

    Article  Google Scholar 

  4. Sipper, M., Sanchez, E., Mange, D., Tomassini, M.: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans. Evol. Comput. 1(1), 83–97 (1997)

    Article  Google Scholar 

  5. Duan, H., Shao, S., Su, B., Zhang, L.: New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci. China Technol. Sci. 53(8), 2025–2031 (2010). https://doi.org/10.1007/s11431-010-3160-z

    Article  Google Scholar 

  6. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  7. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2011)

    Article  Google Scholar 

  8. Wang, Z., et al.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017)

    Article  Google Scholar 

  9. Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015)

    Article  Google Scholar 

  10. Choi, S., Ham, S., Wang, G.: Memristor synapses for neuromorphic computing. In: Memristors-Circuits and Applications of Memristor Devices. IntechOpen (2019)

    Google Scholar 

  11. Dang, B., et al.: Physically transient memristor synapse based on embedding magnesium nanolayer in oxide for security neuromorphic electronics. IEEE Electron Device Lett. 80(8), 1265–1268 (2019)

    Article  Google Scholar 

  12. Adnan, M.M., Sayyaparaju, S., Rose, G.S., Schuman, C.D., Ku, B.W., Lim, S.K.: A twin memristor synapse for spike timing dependent learning in neuromorphic systems. In: 31st IEEE International System-on-Chip Conference (SOCC), pp. 37–42. IEEE (2018)

    Google Scholar 

  13. Hong, Q., Zhao, L., Wang, X.: Novel circuit designs of memristor synapse and neuron. Neurocomputing 330, 11–16 (2019)

    Article  Google Scholar 

  14. Liu, C., Liu, F., Li, H.H.: Beyond CMOS: memristor and its application for next generation storage and computing. ECS Trans. 85(6), 115–125 (2018)

    Article  Google Scholar 

  15. Sun, J., Zhao, X., Fang, J., Wang, Y.: Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn. 94(4), 2879–2887 (2018). https://doi.org/10.1007/s11071-018-4531-4

    Article  Google Scholar 

  16. Chen, Y., Liu, G., Wang, C., Zhang, W., Li, R.W., Wang, L.: Polymer memristor for information storage and neuromorphic applications. Mater. Horiz. 1(5), 489–506 (2014)

    Article  Google Scholar 

  17. Liu, G., et al.: Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater. 2(2) (2016). https://doi.org/10.1002/aelm.201500298

  18. Duan, S., Hu, X., Wang, L., Li, C., Mazumder, P.: Memristor-based RRAM with applications. Sci. China Inf. Sci. 55(6), 1446–1460 (2012). https://doi.org/10.1007/s11432-012-4572-0

    Article  Google Scholar 

  19. Xu, C., Dong, X., Jouppi, N.P., Xie, Y.: Design implications of memristor-based RRAM cross-point structures. In: Design, Automation & Test in Europe, pp. 1–6. IEEE (2011)

    Google Scholar 

  20. Shaarawy, N., Emara, A., El-Naggar, A.M., Elbtity, M.E., Ghoneima, M., Radwan, A.G.: Design and analysis of 2T2M hybrid CMOS-memristor based RRAM. Microelectron. J. 73, 75–85 (2018)

    Article  Google Scholar 

  21. Majumder, M.B., Hasan, M.S., Uddin, M., Rose, G.S.: A secure integrity checking system for nanoelectronic resistive RAM. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(2), 416–429 (2018)

    Article  Google Scholar 

  22. Zhang, X., et al.: Novel hybrid computing architecture with memristor-based processing-in-memory for data-intensive applications. In: 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–3. IEEE (2018)

    Google Scholar 

  23. Xia, Q., et al.: Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    Article  Google Scholar 

  24. Kvatinsky, S., et al.: MAGIC-memristor-aided logic. IEEE Trans. Circ. Syst. II Express Briefs 61(11), 895–899 (2014)

    Google Scholar 

  25. Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: MRL-memristor ratioed logic. In: 13th International Workshop on Cellular Nanoscale Networks and their Applications, pp. 1–6. IEEE (2012)

    Google Scholar 

  26. Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-based material implication (IMPLY) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2013)

    Article  Google Scholar 

  27. Guckert, L., Swartzlander, E.E.: MAD gates-memristor logic design using driver circuitry. IEEE Trans. Circ. Syst. II Express Briefs 64(2), 171–175 (2016)

    Google Scholar 

  28. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Article  Google Scholar 

  29. Hu, X., Schultis, M.J., Kramer, M., Bagla, A., Shetty, A., Friedman, J.S.: Overhead requirements for stateful memristor logic. IEEE Trans. Circ. Syst. I Regul. Pap. 66(1), 263–273 (2018)

    Article  Google Scholar 

  30. Pershin, Y.V.: A demonstration of implication logic based on volatile (diffusive) memristors. IEEE Trans. Circ. Syst. II Express Briefs 66(6), 1033–1037 (2018)

    Google Scholar 

  31. Danaboina, Y.K.Y., Samanta, P., Datta, K., Chakrabarti, I., Sengupta, I.: Design and implementation of threshold logic functions using memristors. In: 32nd International Conference on VLSI Design and 18th International Conference on Embedded Systems (VLSID), pp. 518–519. IEEE (2019)

    Google Scholar 

  32. Liu, G., Zheng, L., Wang, G., Shen, Y., Liang, Y.: A carry lookahead adder based on hybrid CMOS-memristor logic circuit. IEEE Access 7, 43691–43696 (2019)

    Article  Google Scholar 

  33. Teimoory, M., Amirsoleimani, A., Shamsi, J., Ahmadi, A., Alirezaee, S., Ahmadi, M.: Optimized implementation of memristor-based full adder by material implication logic. In: 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 562–565. IEEE (2014)

    Google Scholar 

  34. Shaltoot, A., Madian, A.: Memristor based carry lookahead adder architectures. In: IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 298–301. IEEE (2012)

    Google Scholar 

  35. Teimoory, M., Amirsoleimani, A., Ahmadi, A., Alirezaee, S., Salimpour, S., Ahmadi, M.: Memristor-based linear feedback shift register based on material implication logic. In: European Conference on Circuit Theory and Design (ECCTD), pp. 1–4. IEEE (2015)

    Google Scholar 

  36. Chakraborty, A., Dhara, A., Rahaman, H.: Design of memristor-based up-down counter using material implication logic. In: International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 269–274. IEEE (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R and D Program of China for International S and T Cooperation Projects (2017YFE0103900), in part by the Joint Funds of the National Natural Science Foundation of China (U1804262), in part by the State Key Program of National Natural Science of China under Grant 61632002, in part by the National Natural Science of China under Grant 61603348, Grant 61775198, Grant 61603347, and Grant 61572446, in part by the Foundation of Young Key Teachers from University of Henan Province (2018GGJS092), and in part by the Youth Talent Lifting Project of Henan Province and Henan Province University Science and Technology Innovation Talent Support Plan under Grant 20HASTIT027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Q., Sun, J., Wang, Y. (2020). Design of a Four-Person Voter Circuit Based on Memristor Logic. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1160. Springer, Singapore. https://doi.org/10.1007/978-981-15-3415-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3415-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3414-0

  • Online ISBN: 978-981-15-3415-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics