Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolutionary Approach to Discovery of Classification Rules from Remote Sensing Images

  • Conference paper
  • First Online:
Applications of Evolutionary Computing (EvoWorkshops 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2611))

Included in the following conference series:

Abstract

In this article a new method for classification of remote sensing images is described. For most applications, these images contain voluminous, complex, and sometimes noisy data. For the approach presented herein, image classification rules are discovered by an evolution-based process, rather than by applying an a priori chosen classification algorithm. During the evolution process, classification rules are created using raw remote sensing images, the expertise encoded in classified zones of images, and statistics about related thematic objects. The resultant set of evolved classification rules are simple to interpret, efficient, robust and noise resistant. This evolution-based approach is detailed and validated based on remote sensing images covering not only urban zones of Strasbourg, France, but also vegetation zones of the lagoon of Venice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. H. Bock, E. Diday, (eds.) Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data, [in] Studies in Classification, Data Analysis and Knowledge Organization, vol. 15, Springer-Verlag, Heidelberg, 1999.

    Google Scholar 

  2. C. Weber, Images satellitaires et milieu urbain, Hermès, Paris, 1995.

    Google Scholar 

  3. K. A. DeJong, Learning with Genetic Algorithms: An Overview, Machine Learning, vol. 3, pp. 121–138, 1988.

    Google Scholar 

  4. S. W. Wilson, State of XCS Classifier System Research, [in] Proc. of IWLCS-99, Orlando,1999.

    Google Scholar 

  5. R. Fjørtoft, P. Marthon, A. Lopes, F. Sery, D. Ducrot-Gambart, E. Cubero-Castan, Region-Based Enhancement and Analysis of SAR Images, [in] Proc. of ICIP’96, vol. 3, Lausanne, pp. 879–882, 1996.

    Google Scholar 

  6. T. Kurita, N. Otsu, Texture Classification by Higher Order Local Autocorrelation Features, [in] Proc. of Asian Conf. on Computer Vision, Osaka, pp. 175–178, 1993.

    Google Scholar 

  7. J. Korczak, N. Louis, Synthesis of Conceptual Hierarchies Applied to Remote Sensing, [in] Proc. of SPIE, Image and Signal Processing for Remote Sensing IV, Barcelona, pp. 397–406, 1999.

    Google Scholar 

  8. M. V. Rendon, Reinforcement Learning in the Fuzzy Classifier System, Reporte de Investigaci No. CIA-RI-031, ITESM, Campus Monterrey, Centro de Inteligencia Artificial, 1997.

    Google Scholar 

  9. R. L. Riolo, Empirical Studies of Default Hierarchies and Sequences of Rules in Learning Classifier Systems, PhD Dissertation, Comp. Sc. and Eng. Dept, Univ. of Michigan, 1988.

    Google Scholar 

  10. R. A. Richards, Zeroth-Order Shape Optimization Utilizing A Learning Classifier System, http://www.stanford.edu/∼buc/SPHINcsX/book.html, Stanford, 1995.

  11. T. Blickle, L. Thiele, A Comparison of Selection Schemes used in Genetic Algorithms, Computer Engineering and Communication Networks Lab, TIK-Report Nr. 11, Second Edition, Swiss Federal Institute of Technology, Zurich, 1995.

    Google Scholar 

  12. DAIS, M. Wooding, Proceedings of the Final Results Workshop on DAISEX (Digital AIrborne Spectrometer EXperiment), ESTEC, Noordwijk, 2001.

    Google Scholar 

  13. A. Quirin, Découverte de règles de classification: classifieurs évolutifs, Mémoire DEA d’Informatique, Université Louis Pasteur, LSIIT UMR-7005 CNRS, Strasbourg, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korczak, J., Quirin, A. (2003). Evolutionary Approach to Discovery of Classification Rules from Remote Sensing Images. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-36605-9_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00976-4

  • Online ISBN: 978-3-540-36605-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics