Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11693))

Included in the following conference series:

Abstract

The famous Fiat-Shamir transformation turns any public-coin three-round interactive proof, i.e., any so-called \(\Sigma {\text {-protocol}}\), into a non-interactive proof in the random-oracle model. We study this transformation in the setting of a quantum adversary that in particular may query the random oracle in quantum superposition.

Our main result is a generic reduction that transforms any quantum dishonest prover attacking the Fiat-Shamir transformation in the quantum random-oracle model into a similarly successful quantum dishonest prover attacking the underlying \(\Sigma {\text {-protocol}}\) (in the standard model). Applied to the standard soundness and proof-of-knowledge definitions, our reduction implies that both these security properties, in both the computational and the statistical variant, are preserved under the Fiat-Shamir transformation even when allowing quantum attacks. Our result improves and completes the partial results that have been known so far, but it also proves wrong certain claims made in the literature.

In the context of post-quantum secure signature schemes, our results imply that for any \(\Sigma {\text {-protocol}}\) that is a proof-of-knowledge against quantum dishonest provers (and that satisfies some additional natural properties), the corresponding Fiat-Shamir signature scheme is secure in the quantum random-oracle model. For example, we can conclude that the non-optimized version of Fish, which is the bare Fiat-Shamir variant of the NIST candidate Picnic, is secure in the quantum random-oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    E.g., the underlying computational hardness assumption does not hold anymore in the context of a quantum adversary.

  2. 2.

    In the (quantum) random-oracle model, statistical security considers a computationally unbounded attacker with a polynomially bounded number of oracle queries.

  3. 3.

    The paper [LZ19] was put on eprint (ia.cr/2019/262) a few days after our eprint version (ia.cr/2019/190).

  4. 4.

    Alternatively, we may understand \(|\phi _0\rangle \) as an auxiliary input given to \(\mathcal A\).

  5. 5.

    If it is the final output that is measured then there is nothing left to reprogram.

  6. 6.

    We consider \(|\mathcal{Y}|\) to be superpolynomial in the security parameter, so that \(\frac{1}{2(q+1)|\mathcal{Y}|}\) is negligible and can be neglected. In cases where \(|\mathcal{Y}|\) is polynomial, the presented bound is not optimal, but an improved bound can be derived with the same kind of techniques.

  7. 7.

    Informally, these modifications mean that we let \(\mathcal A\) make one more query to get H(x) into register , and \(\tilde{G}_x^{H(x)}\) would then check that indeed contains H(x).

  8. 8.

    We recall that in case z is a quantum state, V is given by means of a measurement.

  9. 9.

    In other words, \(\mathcal A\) is then non-uniform quantum polynomial-time with quantum advice.

  10. 10.

    In fact, that is how the Fiat-Shamir transform was originally conceived in [FS87]. Only later [BG93] adapted the idea to construct a non-interactive zero-knowledge proof system.

  11. 11.

    See also Theorem 25 in [Unr17] for a different proof technique.

References

  1. Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_9

    Chapter  Google Scholar 

  2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34

    Chapter  Google Scholar 

  3. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 474–483, October 2014

    Google Scholar 

  4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  5. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS P), pp. 353–367, April 2018

    Google Scholar 

  6. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_28

    Chapter  Google Scholar 

  7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)

    Google Scholar 

  8. Chase, M., et al. Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 1825–1842. ACM, New York (2017)

    Google Scholar 

  9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)

    Article  MathSciNet  Google Scholar 

  10. Damgard, I.: On sigma-protocols, Lecture Notes, Faculty of Science Aarhus University, Department of Computer Science (2010)

    Google Scholar 

  11. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat–Shamir transformation in a quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_4

    Chapter  MATH  Google Scholar 

  12. Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforgeable in the quantum random-oracle model. In: 10th Conference on the Theory of Quantum Computation, Communication and Cryptography, pp. 147 (2015)

    Google Scholar 

  13. Fehr, S.: Classical proofs for the quantum collapsing property of classical hash functions. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 315–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_12

    Chapter  MATH  Google Scholar 

  14. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_5

    Chapter  Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  16. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean circuits. In: 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, pp. 1069–1083. USENIX Association (2016)

    Google Scholar 

  17. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing - STOC 2007, p. 21 (2007)

    Google Scholar 

  18. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_18

    Chapter  MATH  Google Scholar 

  19. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  20. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  21. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. Cryptology ePrint Archive, Report 2019/262 (2019). https://eprint.iacr.org/2019/262

  22. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17

    Chapter  MATH  Google Scholar 

  23. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10

    Chapter  Google Scholar 

  24. Unruh, D.: Quantum position verification in the random oracle model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_1

    Chapter  Google Scholar 

  25. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

  26. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18

    Chapter  Google Scholar 

  27. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_3

    Chapter  Google Scholar 

  28. Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 679–687. IEEE, October 2012

    Google Scholar 

  29. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. Int. J. Quantum Inf. 13(04), 1550014 (2015)

    Article  MathSciNet  Google Scholar 

  30. Zhandry, M.: Quantum lightning never strikes the same state twice. http://arxiv.org/abs/1711.02276 (2017)

  31. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. Cryptology ePrint Archive, Report 2018/276 (2018). https://eprint.iacr.org/2018/276

Download references

Acknowledgement

We thank Tommaso Gagliardoni and Dominique Unruh for comments on early basic ideas of our approach, and Andreas Hülsing, Eike Kiltz and Greg Zaverucha for helpful discussions. We thank Thomas Vidick for helpful remarks on an earlier version of this article.

JD and SF were partly supported by the EU Horizon 2020 Research and Innovation Program Grant 780701 (PROMETHEUS). JD, CM, and CS were supported by a NWO VIDI grant (Project No. 639.022.519).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Majenz or Christian Schaffner .

Editor information

Editors and Affiliations

Appendices

A Proof of Lemmas 12 and 15

Proof

(of Lemma 12). Let \(\mathcal{A}\) be an adaptive \(\Sigma {\text {-protocol}}\) adversary, producing x and a in the first stage, and z in the second stage. We then consider the following algorithms. \(\mathcal{A}_{init}\) runs the first stage of \(\mathcal{A}\) (using the same initial state), outputting x and a. Let \(|\psi _{x,a}\rangle \) be the corresponding internal state at this point. Furthermore, for any possible x and a, \(\mathcal{A}_{x,a}\) is the following static \(\Sigma {\text {-protocol}}\) adversary. Its initial state is \(|\psi _{x,a}\rangle |a\rangle \) and in the first stage it simply outputs a, and in the second stage, after having received the verifier’s challenge, it runs the second stage of \(\mathcal{A}\). We then see that

$$\begin{aligned} \Pr \bigl [x \not \in \mathcal{L}&\,\wedge \, v = accept :(x,v) \leftarrow \langle \mathcal{A}, \mathcal{V}\rangle \bigr ] \\[1.2ex]&= \sum _{x_\circ \not \in \mathcal{L}} \Pr \bigl [x = x_\circ \,\wedge \, v = accept :(x,v) \leftarrow \langle \mathcal{A}, \mathcal{V}\rangle \bigr ]\\&= \sum _{x_\circ \not \in \mathcal{L}} \sum _a \Pr \bigl [\mathcal{A}_{init} = (x_\circ ,a)\bigr ] \Pr \bigl [\langle \mathcal{A}_{x_\circ ,a} , \mathcal{V}(x_\circ ) \rangle = accept \bigr ]. \end{aligned}$$

Since \( \Pr \bigl [\langle \mathcal{A}_{x_\circ ,a} , \mathcal{V}(x_\circ ) \rangle = accept \bigr ]\) is bounded by a negligible function, given that \(\mathcal{A}_{x,a}\) is a (quantum polynomial-time/unbounded) static adversary, the claim follows.    \(\square \)

Proof

(of Lemma 15). Let \(\mathcal{A}\) be an adaptive \(\Sigma {\text {-protocol}}\) adversary, producing x and a in the first stage, and z in the second stage. We construct a black-box knowledge extractor \(\mathcal{K}_{ad}\) that works for any such \(\mathcal{A}\). In a first step, \(\mathcal{K}_{ad}^\mathcal{A}\) runs the first stage of \(\mathcal{A}\) using the black-box access to \(\mathcal{A}\) (and having access to the initial state of \(\mathcal{A}\)). Below, we call this first stage of \(\mathcal{A}\) as \(\mathcal{A}_{init}\). This produces x and a, and we write \(|\psi _{x,a}\rangle \) for the corresponding internal state. Then, it runs \(\mathcal{K}_{na}^{\mathcal{A}^{x,a}}\), where \(\mathcal{K}_{na}\) is the knowledge extractor guaranteed to exist for static adversaries, and \(\mathcal{A}^{x,a}\) is the static adversary that works as follows. It’s initial state is \(|\psi _{x,a}\rangle |a\rangle \) and in the first stage it simply outputs a, and in the second stage it runs the second stage of \(\mathcal{A}\) on the state \(|\psi _{x,a}\rangle \). Note that having obtained x and a and the state \(|\psi _{x,a}\rangle \) as first step of \(\mathcal{K}_{ad}^\mathcal{A}\), \(\mathcal{K}_{na}^{\mathcal{A}^{x,a}}\) can then be executed with black box access to (the second stage of) \(\mathcal{A}\). For any subset \(X \subseteq \mathcal{X}\), we now see that

$$\begin{aligned} \Pr&\left[ x\in X\wedge (x,w)\in R : (x,w)\leftarrow \mathcal {K}_{ad}^{\mathcal {A}}\right] \\[0.5em]&= \sum _{x\in X} \sum _a \Pr \bigr [\mathcal{A}_{init} = (x,a) \bigl ] \Pr \Bigl [(x,w)\in R : w\leftarrow \mathcal {K}_{na}^{\mathcal {A}^{x,a}} \Bigr ] \\&\ge \sum _{x\in X} \sum _a \Pr \bigr [\mathcal{A}_{init} = (x,a) \bigl ] \cdot \frac{1}{p(\eta )} \cdot \Pr \bigl [\langle \mathcal{A}^{x,a} , \mathcal{V}(x)\rangle = accept \bigr ]^d- \kappa (\eta )\\&\ge \frac{1}{p(\eta )}\bigg (\sum _{x\in X} \sum _a \Pr \bigr [\mathcal{A}_{init} = (x,a) \bigl ] \Pr \bigl [\langle \mathcal{A}^{x,a} , \mathcal{V}(x)\rangle = accept \bigr ]\bigg )^d -\kappa (\eta )\\&= \frac{1}{p(\eta )} \Pr \bigl [ x \in X \wedge v\!=\!1: (x,v)\leftarrow \langle \mathcal{A}^{x,a} , \mathcal{V}(x)\rangle \bigr ]^d -\kappa (\eta ), \end{aligned}$$

where the first inequality is because of the static proof-of-knowledge property, and the second is Jensen’s inequality, noting that we may assume without loss of generality that \(d \ge 1\).    \(\square \)

B Generalization of Lemma 7 from [Unr12]

Lemma 29

Let \(P_1,\ldots ,P_n\) be projections and \(|\psi \rangle \) a state vector, and set

$$ V := \frac{1}{n} \sum _i \langle \psi | P_i |\psi \rangle = \frac{1}{n} \sum _i \Vert P_i |\psi \rangle \Vert ^2 \quad \text {and}\quad F := \frac{1}{n^t}\sum _{i_1 \cdots i_t} \Vert P_{i_t} \cdots P_{i_1} |\psi \rangle \Vert ^2. $$

Then \(F \ge V^{2t-1}\).

The case \(t=2\) was proven in [Unr12, Lemma 7]. We show here how to extend the proof to \(t = 3\); the general case works along the same lines.

Proof

(of the case \(t = 3\)). For convenience, set \(A:= \frac{1}{n} \sum _i P_i\) and \(|\psi _{ijk}\rangle := P_k P_j P_i |\psi \rangle \). Then, using convexity of the function \(x \mapsto x^5\) to argue the first inequality, we get

$$\begin{aligned} V^5 =&(\langle \psi | A |\psi \rangle )^5 = \langle \psi | A^5 |\psi \rangle = \frac{1}{n^5} \sum _{i j k \ell m} \langle \psi | P_i P_j P_k P_\ell P_m |\psi \rangle \\&= \frac{1}{n^5} \sum _{i j k \ell m} \langle \psi _{ijk}|\psi _{m \ell k}\rangle = \frac{1}{n} \sum _k \bigg ( \frac{1}{n^2} \sum _{ij} \langle \psi _{ijk}|\bigg )\bigg (\frac{1}{n^2} \sum _{\ell m} |\psi _{m \ell k}\rangle \bigg )\\&\qquad = \frac{1}{n} \sum _k \Big \Vert \frac{1}{n^2} \sum _{ij} |\psi _{ijk}\rangle \Big \Vert ^2 \le \frac{1}{n^3} \sum _{ijk} \Vert |\psi _{ijk}\rangle \Vert ^2 = F, \end{aligned}$$

where the last inequality is Claim 2 in the proof of Lemma 7 in [Unr12].    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Don, J., Fehr, S., Majenz, C., Schaffner, C. (2019). Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26951-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26950-0

  • Online ISBN: 978-3-030-26951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics