Abstract
This chapter presents multi-policy decision-making (MPDM): a novel approach to navigating in dynamic multi-agent environments. Rather than planning the trajectory of the robot explicitly, the planning process selects one of a set of closed-loop behaviors whose utility can be predicted through forward simulation that captures the complex interactions between the actions of these agents. These polices capture different high-level behavior and intentions, such as driving along a lane, turning at an intersection, or following pedestrians. We present two different scenarios where MPDM has been applied successfully: an autonomous driving environment models vehicle behavior for both our vehicle and nearby vehicles and a social environment, where multiple agents or pedestrians configure a dynamic environment for autonomous robot navigation. We present extensive validation for MPDM on both scenarios, using simulated and real-world experiments.
Alex G. Cunningham and Enric Galceran have contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper, we use the term closed-loop policies to mean policies that react to the presence of other agents, in a coupled manner. The same concept applies to the term closed-loop forward simulation.
- 2.
References
Galceran, E., Cunningham, A.G., Eustice, R.M., Olson, E.: Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: theory and experiment. In: Autonomous Robots, pp. 1–16 (2017)
Mehta, D., Ferrer, G., Olson, E.: Autonomous navigation in dynamic social environments using multi-policy decision making. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1190–1197 (2016)
Cunningham, A.G., Galceran, E., Eustice, R.M., Olson, E.: MPDM: multipolicy decision-making in dynamic, uncertain environments for autonomous driving. In: Proceedings of the IEEE International Conference on Robotics and Automation. Seattle, WA, USA (2015)
Galceran, E., Cunningham, A.G., Eustice, R.M., Olson, E.: Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction. In: Proceedings of the Robotics: Science and Systems Conference. Rome, Italy (2015)
Choi, J., Eoh, G., Kim, J., Yoon, Y., Park, J., Lee, B.H.: Analytic collision anticipation technology considering agents’ future behavior. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1656–1661. Taipei, Taiwan (2010)
Ohki, T., Nagatani, K., Yoshida, K.: Collision avoidance method for mobile robot considering motion and personal spaces of evacuees. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1819–1824. Taipei, Taiwan (2010)
Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2210–2215. Edmonton, AB, Canada (2005)
Du Toit, N., Burdick, J.: Robotic motion planning in dynamic, cluttered, uncertain environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 966–973. Anchorage, AK, USA (2010)
Fulgenzi, C., Tay, C., Spalanzani, A., Laugier, C.: Probabilistic navigation in dynamic environment using rapidly-exploring random trees and Gaussian processes. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1056–1062. Nice, France (2008)
Du Toit, N.E., Burdick, J.W.: Robot motion planning in dynamic, uncertain environments. IEEE Trans. Robot. 28(1), 101–115 (2012)
Havlak, F., Campbell, M.: Discrete and continuous, probabilistic anticipation for autonomous robots in urban environments. IEEE Trans. Robot. 30(2), 461–474 (2014)
Dagli, I., Brost, M., Breuel, G.: Agent technologies, infrastructures, tools, and applications for e-services. NODe 2002 Agent-Related Workshops. Chapter Action Recognition and Prediction for Driver Assistance Systems Using Dynamic Belief Networks, pp. 179–194. Springer, Berlin, Heidelberg (2003)
Gindele, T., Brechtel, S., Dillmann, R.: Learning driver behavior models from traffic observations for decision making and planning. In: IEEE Intelligent Transportation Systems Magazine, pp. 69–79 (2015)
Broadhurst, A., Baker, S., Kanade, T.: Monte Carlo road safety reasoning. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 319–324. Las Vegas, NV, USA (2005)
Ferguson, D., Darms, M., Urmson, C., Kolski, S.: Detection, prediction, and avoidance of dynamic obstacles in urban environments. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 1149–1154. Eindhoven, Netherlands (2008)
Hardy, J., Campbell, M.: Contingency planning over probabilistic obstacle predictions for autonomous road vehicles. IEEE Trans. Robot. 29(4), 913–929 (2013)
Joseph, J., Doshi-Velez, F., Huang, A.S., Roy, N.: A Bayesian nonparametric approach to modeling motion patterns. Auton. Robots 31(4), 383–400 (2011)
Kim, K., Lee, D., Essa, I.: Gaussian process regression flow for analysis of motion trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1164–1171. Barcelona, Spain (2011)
Trautman, P., Krause, A.: Unfreezing the robot: Navigation in dense, interacting crowds. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 797–803. Taipei, Taiwan (2010)
Aoude, G.S., Luders, B.D., Joseph, J.M., Roy, N., How, J.P.: Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns. Auton. Robots 35(1), 51–76 (2013)
Tran, Q., Firl, J.: Modelling of traffic situations at urban intersections with probabilistic non-parametric regression. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 334–339. Gold Coast City, Australia (2013)
Tran, Q., Firl, J.: Online maneuver recognition and multimodal trajectory prediction for intersection assistance using non-parametric regression. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 918–923. Dearborn, MI, USA (2014)
Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehicles from demonstration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2641–2646 (2015)
DARPA: DARPA Urban Challenge. http://archive.darpa.mil/grandchallenge/ (2007)
Montemerlo, M., et al.: Junior: the Stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008)
Miller, I., et al.: Team Cornell’s skynet: robust perception and planning in an urban environment. J. Field Robot. 25(8), 493–527 (2008)
Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M.N., Dolan, J., Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T.M., Kolski, S., Kelly, A., Likhachev, M., McNaughton, M., Miller, N., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo, Y.W., Singh, S., Snider, J., Stentz, A., Whittaker, W., Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T., Demitrish, D., Litkouhi, B., Nickolaou, J., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms, M., Ferguson, D.: Autonomous driving in urban environments: boss and the Urban Challenge. J. Field Robot. 25(8), 425–466 (2008)
Ferguson, D., Howard, T.M., Likhachev, M.: Motion planning in urban environments. J. Field Robot. 25(11–12), 939–960 (2008)
Werling, M., Ziegler, J., Kammel, S., Thrun, S.: Optimal trajectory generation for dynamic street scenarios in a frenet frame. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 987–993. Anchorage, AK, USA (2010)
Xu, W., Wei, J., Dolan, J., Zhao, H., Zha, H.: A real-time motion planner with trajectory optimization for autonomous vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2061–2067. Saint Paul, MN, USA (2012)
Bai, H., Hsu, D., Lee, W.S.: Integrated perception and planning in the continuous space: a POMDP approach. Int. J. Robot. Res. 33(9), 1288–1302 (2014)
Kurniawati, H., Hsu, D., Lee, W.: SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Proceedings of the Robotics: Science and Systems Conference. Zurich, Switzerland (2008)
Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: Lafferty J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 2164–2172. Curran Associates, Inc. (2010)
Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)
Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)
Thrun, S.: Monte Carlo POMDPs. In: Proceedings of the Advances in Neural Information Processing Systems Conference pp. 1064–1070 (2000)
Candido, S., Davidson, J., Hutchinson, S.: Exploiting domain knowledge in planning for uncertain robot systems modeled as pomdps. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3596–3603. Anchorage, AK, USA (2010)
Lee, T., Kim, Y.J.: Massively parallel motion planning algorithms under uncertainty using POMDP. Int. J. Robot. Res. 35(8), 928–942 (2016)
Wei, J., Dolan, J.M., Snider, J.M., Litkouhi, B.: A point-based MDP for robust single-lane autonomous driving behavior under uncertainties. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2586–2592. Shanghai, China (2011)
Ulbrich, S., Maurer, M.: Probabilistic online pomdp decision making for lane changes in fully automated driving. In: Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 2063–2067 (2013)
Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic MDP-behavior planning for cars. In: Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 1537–1542 (2011)
Bandyopadhyay, T., Jie, C.Z., Hsu, D., Ang, M.H., Rus, D., Frazzoli, E.: In: Experimental Robotics: The 13th International Symposium on Experimental Robotics, Chapter Intention-Aware Pedestrian Avoidance, pp. 963–977. Springer (2013)
Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs. In: Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 392–399 (2014)
Bandyopadhyay, T., Won, K., Frazzoli, E., Hsu, D., Lee, W., Rus, D.: Intention-aware motion planning. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) In: Proceedings of the International Workshop on the Algorithmic Foundations of Robotics. Springer Tracts in Advanced Robotics, vol. 86, pp. 475–491. Springer, Berlin, Heidelberg (2013)
He, R., Brunskill, E., Roy, N.: Efficient planning under uncertainty with macro-actions. J. Artif. Intell. Res. 40, 523–570 (2011)
Somani, A., Ye, N., Hsu, D., Lee, W.S.: DESPOT: Online POMDP planning with regularization. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 1772–1780. Curran Associates, Inc. (2013)
van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. Robotics Research, Springer Tracts in Advanced Robotics 70, 3–19 (2011)
Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: Clearpath: highly parallel collision avoidance for multi-agent simulation. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–187. ACM (2009)
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)
Ferrer, G., Garrell, A., Sanfeliu, A.: Social-aware robot navigation in urban environments. In: European Conference on Mobile Robotics, pp. 331–336 (2013)
Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23(5), 874–883 (2007)
Svenstrup, M., Bak, T., Andersen, H.J.: Trajectory planning for robots in dynamic human environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4293–4298 (2010)
Huang, W.H., Fajen, B.R., Fink, J.R., Warren, W.H.: Visual navigation and obstacle avoidance using a steering potential function. Robot. Auton. Syst. 54(4), 288–299 (2006)
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)
Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1398–1404 (1991)
Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. Proceedings of the IEEE International Conference on Robotics and Automation 1, 341–346 (1999)
Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W.: Socially compliant mobile robot navigation via inverse reinforcement learning. Int. J. Robot. Res. (2016)
Kuderer, M., Kretzschmar, H., Sprunk, C., Burgard, W.: Feature-based prediction of trajectories for socially compliant navigation. In: Proceedings of Robotics: Science and Systems (RSS) (2012)
Luber, M., Spinello, L., Silva, J., Arras, K.O.: Socially-aware robot navigation: a learning approach. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 902–907 (2012)
Ziebart, B.D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J.A., Hebert, M., Dey, A.K., Srinivasa, S.: Planning-based prediction for pedestrians. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3931–3936 (2009)
Ferrer, G., Garrell, A., Herrero, F., Sanfeliu, A.: Robot social-aware navigation framework to accompany people walking side-by-side. In: Autonomous Robots, pp. 1–19 (2016)
Kuderer, M., Burgard, W.: An approach to socially compliant leader following for mobile robots. In: International Conference on Social Robotics, pp. 239–248. Springer (2014)
Stein, P., Spalanzani, A., Santos, V., Laugier, C.: Leader following: a study on classification and selection. Robot. Auton. Syst. 75(Part A), 79 – 95 (2016)
Ferrer, G.: Social robot navigation in urban dynamic environments. Ph.D. thesis, Universitat Politèctnica de Catalunya, Spain (October 2015)
Ferrer, G., Sanfeliu, A.: Multi-objective cost-to-go functions on robot navigation in dynamic environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3824–3829 (2015)
Fulgenzi, C., Spalanzani, A., Laugier, C.: Probabilistic motion planning among moving obstacles following typical motion patterns. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4027–4033. IEEE (2009)
Trautman, P., Ma, J., Murray, R.M., Krause, A.: Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation. Int. J. Robot. Res. 34(3), 335–356 (2015)
Foka, A., Trahanias, P.: Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction. Int. J. Soc. Robot. 2(1), 79–94 (2010). https://doi.org/10.1007/s12369-009-0037-z
Galceran, E., Olson, E., Eustice, R.M.: Augmented vehicle tracking under occlusions for decision-making in autonomous driving. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3559–3565. Hamburg, Germany (2015)
Huang, A.S., Olson, E., Moore, D.C.: LCM: lightweight communications and marshalling. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4057–4062 (2010)
Olson, E., Strom, J., Morton, R., Richardson, A., Ranganathan, P., Goeddel, R., Bulic, M., Crossman, J., Marinier, B.: Progress toward multi-robot reconnaissance and the magic 2010 competition. J. Field Robot. 29(5), 762–792 (2012)
Acknowledgements
This work was supported by a grant from Ford Motor Company via the Ford-UM Alliance under award N015392, DARPA YIP grant under award D13AP00059, CyberSEES grant award 1442773, and ARIA (TRI) grant award N021563.
Parts of this work have been previously published in [1] which is under Copyright by Springer, 2017. These parts are reused with the permission of Springer which is acknowledged with high appreciation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Cunningham, A.G., Galceran, E., Mehta, D., Ferrer, G., Eustice, R.M., Olson, E. (2019). MPDM: Multi-policy Decision-Making from Autonomous Driving to Social Robot Navigation. In: Waschl, H., Kolmanovsky, I., Willems, F. (eds) Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions . Lecture Notes in Control and Information Sciences, vol 476. Springer, Cham. https://doi.org/10.1007/978-3-319-91569-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-91569-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91568-5
Online ISBN: 978-3-319-91569-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)