Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

(Total) Vector Domination for Graphs with Bounded Branchwidth

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

Given a graph G = (V,E) of order n and an n-dimensional non-negative vector d = (d(1),d(2),…,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S ⊆ V such that every vertex v in V ∖ S (resp., in V) has at least d(v) neighbors in S. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the k-tuple dominating set problem (this k is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respect to k, where k is the size of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Transactions on Algorithms TALG 2, 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  2. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems. Journal of Computer and System Sciences 77, 1159–1171 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics 160, 53–60 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms for branchwidth, in Automata, Languages and Programming. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 627–637. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences 67, 789–807 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chapelle, M.: Parameterized complexity of generalized domination problems on bounded tree-width graphs. arXiv preprint arXiv:1004.2642 (2010)

    Google Scholar 

  7. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Cicalese, F., Milanič, M., Vaccaro, U.: Hardness, approximability, and exact algorithms for vector domination and total vector domination in graphs. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 288–297. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Cicalese, F., Milanic, M., Vaccaro, U.: On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Applied Mathematics 161, 750–767 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM Journal on Computing 34, 825–847 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms (TALG) 1, 33–47 (2005)

    Article  MathSciNet  Google Scholar 

  13. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM (JACM) 52, 866–893 (2005)

    Google Scholar 

  14. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. The Computer Journal 51, 292–302 (2008)

    Article  Google Scholar 

  15. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Mathematics of Operations Research 7, 515–531 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness, Cornell University, Mathematical Sciences Institute (1992)

    Google Scholar 

  18. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Information Processing Letters 111, 814–818 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM Journal on Computing 36, 281–309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. ACM Transactions on Algorithms (TALG) 4, 30 (2008)

    MathSciNet  Google Scholar 

  21. Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets of graphs. Combinatorics, Probability and Computing 8, 547–553 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Harary, F., Haynes, T.W.: Double domination in graphs. Ars Combinatoria 55, 201–214 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: advanced topics, vol. 40. Marcel Dekker (1998)

    Google Scholar 

  24. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker (1998)

    Google Scholar 

  25. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal of the ACM (JACM) 41, 960–981 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 116–126. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52, 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Robertson, N., Seymour, P.D.: Graph minors. XIII. the disjoint paths problem, Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

    Google Scholar 

  30. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishii, T., Ono, H., Uno, Y. (2014). (Total) Vector Domination for Graphs with Bounded Branchwidth. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics