Abstract
Given a graph G = (V,E) of order n and an n-dimensional non-negative vector d = (d(1),d(2),…,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum S ⊆ V such that every vertex v in V ∖ S (resp., in V) has at least d(v) neighbors in S. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the k-tuple dominating set problem (this k is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respect to k, where k is the size of solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Transactions on Algorithms TALG 2, 153–177 (2006)
Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems. Journal of Computer and System Sciences 77, 1159–1171 (2011)
Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics 160, 53–60 (2012)
Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms for branchwidth, in Automata, Languages and Programming. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 627–637. Springer, Heidelberg (1997)
Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences 67, 789–807 (2003)
Chapelle, M.: Parameterized complexity of generalized domination problems on bounded tree-width graphs. arXiv preprint arXiv:1004.2642 (2010)
Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013)
Cicalese, F., Milanič, M., Vaccaro, U.: Hardness, approximability, and exact algorithms for vector domination and total vector domination in graphs. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 288–297. Springer, Heidelberg (2011)
Cicalese, F., Milanic, M., Vaccaro, U.: On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Applied Mathematics 161, 750–767 (2013)
Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM Journal on Computing 34, 825–847 (2005)
Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms (TALG) 1, 33–47 (2005)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM (JACM) 52, 866–893 (2005)
Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. The Computer Journal 51, 292–302 (2008)
Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Mathematics of Operations Research 7, 515–531 (1982)
Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness, Cornell University, Mathematical Sciences Institute (1992)
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Information Processing Letters 111, 814–818 (2011)
Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM Journal on Computing 36, 281–309 (2006)
Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. ACM Transactions on Algorithms (TALG) 4, 30 (2008)
Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets of graphs. Combinatorics, Probability and Computing 8, 547–553 (1999)
Harary, F., Haynes, T.W.: Double domination in graphs. Ars Combinatoria 55, 201–214 (2000)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: advanced topics, vol. 40. Marcel Dekker (1998)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker (1998)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)
Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal of the ACM (JACM) 41, 960–981 (1994)
Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 116–126. Springer, Heidelberg (2008)
Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52, 153–190 (1991)
Robertson, N., Seymour, P.D.: Graph minors. XIII. the disjoint paths problem, Journal of Combinatorial Theory, Series B 63, 65–110 (1995)
Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishii, T., Ono, H., Uno, Y. (2014). (Total) Vector Domination for Graphs with Bounded Branchwidth. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-54423-1_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54422-4
Online ISBN: 978-3-642-54423-1
eBook Packages: Computer ScienceComputer Science (R0)