Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Estimations d’Erreur dans L pour les Inequations a Obstacle

  • Conference paper
  • First Online:
Mathematical Aspects of Finite Element Methods

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 606))

Abstract

Soit Wh (resp. uh) la solution approchée obtenue en discrétisant par éléments finis du premier ordre une équation (resp. une inéquation) variationnelle dont la solution est u. On compare les quantités ‖u−uhL et ‖u−whL (cf. (4.2) suivante); on en déduit une estimation "presque optimale" pour ‖u−uhL (cf. (4.3) suivante).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. C. BAIOCCHI, E. MAGENES: "Problemi di frontiera libera in idraulica". Accad. Naz. Lincei, Quad. 217, Roma (1975) 394–421.

    Google Scholar 

  2. C. BAIOCCHI, G.A. POZZI: Travail en préparation.

    Google Scholar 

  3. H. BREZIS, G. STAMPACCHIA: "Sur la régilarité de la solution d’inéquations elliptiques". Bull. Soc. Math. France 96 (1968) 153–180.

    MathSciNet  MATH  Google Scholar 

  4. F. BREZZI, G. SACCHI: "A Finite Element Approximation of a Variational Inequality Related to Hydraulics". A paraître sur Calcolo.

    Google Scholar 

  5. P.G. CIARLET, P.A. RAVIART: "General Lagrange and Hermite interpolation in ℝn, with applications to finite element methods". Arch. Rat. Mech. Anal. 46 (1972) 177–199.

    Article  MathSciNet  MATH  Google Scholar 

  6. P.G. CIARLET, P.A. RAVIART: "Maximum principle and uniform convergence for the finite element method". Comp. Mat. Appl. Mech. Eng. 2 (1971) 17–31.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.S. FALK: "Error estimates for the approximation of a class of variational inequalities". Math. of Comp. 28 (1974) 963–971.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. LEWY, G. STAMPACCHIA: "On the regularity of the solution of a variational inequality". Comm. P.A.M. 22 (1969) 153–188.

    MathSciNet  MATH  Google Scholar 

  9. J.C. MIELLOUX: "Méthodes de Jacobi, Gauss-Seidel, sur (sous)-relaxation par blocs, appliquées à une classe de problèmes non linéaires". C.R.A.S. Paris, 273 (1971) 1257–1260.

    MATH  Google Scholar 

  10. U. MOSCO: Conférence de ce Symposium.

    Google Scholar 

  11. U. MOSCO, F. SCARPINI: "Complementarity systems and approximation of variational inequalities" R.A.I.R.O., 9 (1975) 83–104.

    MathSciNet  MATH  Google Scholar 

  12. U. MOSCO, G. STRANG: "One side approximation and variational inequalities". Bull. Amer. Math. Soc. 80 (1974) 308–312.

    Article  MathSciNet  MATH  Google Scholar 

  13. U. MOSCO, G.M. TROIANIELLO: "On the smoothness of solution of the unilateral Dirichlet problem". Boll. U.M.I. 8 (1973) 56–67.

    MathSciNet  MATH  Google Scholar 

  14. J. NITSCHE: "L convergence of finite element approximation". 2ème conférence sur les éléments finis, Rennes (France) (1975).

    Google Scholar 

  15. J. NITSCHE: Conférence de ce Symposium.

    Google Scholar 

  16. R. SCOTT: "Optimal L estimates for the finite element method on irregular meshes". A paraître.

    Google Scholar 

  17. G. STAMPACCHIA: "Formes bilinéaires coercitives sur les ensembles convexes". C.R.A.S. Paris, 258 (1964) 4413–4416.

    MathSciNet  MATH  Google Scholar 

  18. G. STRANG, G. FIX: "An analysis of the finite element method". Prentice-Hall, Englewood Cliffs, N.J. (1973).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ilio Galligani Enrico Magenes

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag

About this paper

Cite this paper

Baiocchi, C. (1977). Estimations d’Erreur dans L pour les Inequations a Obstacle. In: Galligani, I., Magenes, E. (eds) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol 606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0064453

Download citation

  • DOI: https://doi.org/10.1007/BFb0064453

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08432-7

  • Online ISBN: 978-3-540-37158-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics