Abstract
In the standard model (SM), the coupling of the Higgs boson to electrons is real and very small, proportional to the electron mass. New physics could significantly modify both real and imaginary parts of this coupling. We discuss experiments which are sensitive to the Higgs-electron coupling and derive the current bounds on new physics contributing to this coupling. The strongest constraint follows from the ACME bound on the electron electric dipole moment (EDM). We calculate the full analytic two-loop result for the electron EDM and show that it bounds the imaginary part of the Higgs-electron coupling to be less than 1.7×10−2 times the SM electron Yukawa coupling. Deviations of the real part are much less constrained. We discuss bounds from Higgs decays, resonant Higgs production at electron colliders, Higgs mediated B → e + e − decays, and the anomalous magnetic moment of the electron. Currently, the strongest constraint comes from h → e + e − at the LHC, bounding the coupling to be less than ∼ 600 times the SM Yukawa coupling. Important improvements can be expected from future EDM measurements as well as from resonant Higgs production at a next-generation high-luminosity electron-positron collider.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, arXiv:1412.8662 [INSPIRE].
ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 (2014).
G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].
C. Delaunay, T. Golling, G. Perez and Y. Soreq, Enhanced Higgs boson coupling to charm pairs, Phys. Rev. D 89 (2014) 033014 [arXiv:1310.7029] [INSPIRE].
A.L. Kagan et al., Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].
G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].
CMS collaboration, Search for a standard model-like Higgs boson in the μ + μ − and e + e − decay channels at the LHC, Phys. Lett. B 744 (2015) 184 [arXiv:1410.6679] [INSPIRE].
Particle Data Group collaboration, K. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.
LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
ALEPH, DELPHI, L3, OPAL collaborations, LEP Electroweak Working Group, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
J.J. Ward, Precision measurements of particle masses using jets at LEP-2, hep-ex/9912025 [INSPIRE].
T. Han and Z. Liu, Potential precision of a direct measurement of the Higgs boson total width at a muon collider, Phys. Rev. D 87 (2013) 033007 [arXiv:1210.7803] [INSPIRE].
TLEP Design Study Working Group collaboration, M. Bicer et al., First Look at the Physics Case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
M. Consoli, W. Hollik and F. Jegerlehner, Electroweak radiative corrections for Z physics, CERN-TH-5527-89 [INSPIRE].
G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].
R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].
M. Gorbahn and U. Haisch, Searching for t → c(u)h with dipole moments, JHEP 06 (2014) 033 [arXiv:1404.4873] [INSPIRE].
D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].
J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].
W. Altmannshofer, M. Bauer and M. Carena, Exotic Leptons: Higgs, Flavor and Collider Phenomenology, JHEP 01 (2014) 060 [arXiv:1308.1987] [INSPIRE].
S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [INSPIRE].
ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
J.L. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [INSPIRE].
D. Hanneke, S. Fogwell and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-Order Electron Anomalous Magnetic Moment — Contribution of Diagrams without Closed Lepton Loops, Phys. Rev. D 91 (2015) 033006 [arXiv:1412.8284] [INSPIRE].
G.F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g-2, JHEP 11 (2012) 113 [arXiv:1208.6583] [INSPIRE].
R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett. 106 (2011) 080801 [arXiv:1012.3627] [INSPIRE].
C. Bobeth et al., B s,d → ℓ + ℓ − in the Standard Model with Reduced Theoretical Uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].
CDF collaboration, T. Aaltonen et al., Search for the Decays B 0 s → e + μ − and B 0 s → e + e − in CDF Run II, Phys. Rev. Lett. 102 (2009) 201801 [arXiv:0901.3803] [INSPIRE].
T. Gribouk and A. Czarnecki, Electroweak interactions and the muon g-2: Bosonic two-loop effects, Phys. Rev. D 72 (2005) 053016 [hep-ph/0509205] [INSPIRE].
R.G. Leigh, S. Paban and R.M. Xu, Electric dipole moment of electron, Nucl. Phys. B 352 (1991) 45 [INSPIRE].
D. Chang, W.-Y. Keung and T.C. Yuan, Two loop bosonic contribution to the electron electric dipole moment, Phys. Rev. D 43 (1991) 14 [INSPIRE].
T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [arXiv:1311.4704] [INSPIRE].
C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m(t) dependence of BR[B → X(s)ℓ + ℓ −], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].
A. Denner, G. Weiglein and S. Dittmaier, Application of the background field method to the electroweak standard model, Nucl. Phys. B 440 (1995) 95 [hep-ph/9410338] [INSPIRE].
A.I. Davydychev and J.B. Tausk, Two loop selfenergy diagrams with different masses and the momentum expansion, Nucl. Phys. B 397 (1993) 123 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1503.04830
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Altmannshofer, W., Brod, J. & Schmaltz, M. Experimental constraints on the coupling of the Higgs boson to electrons. J. High Energ. Phys. 2015, 125 (2015). https://doi.org/10.1007/JHEP05(2015)125
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2015)125