Abstract
We consider 3d \( \mathcal{N}\geq 2 \) superconformal field theories on a branched covering of a three-sphere. The Rényi entropy of a CFT is given by the partition function on this space, but conical singularities break the supersymmetry preserved in the bulk. We turn on a compensating R-symmetry gauge field and compute the partition function using localization. We define a supersymmetric observable, called the super Rényi entropy, parametrized by a real number q. We show that the super Rényi entropy is duality invariant and reduces to entanglement entropy in the q → 1 limit. We provide some examples.
Similar content being viewed by others
References
H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009)504007 [arXiv:0905.2562] [INSPIRE].
R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].
H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Rényi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
H. Casini, C. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].
H. Casini and M. Huerta, Entanglement and alpha entropies for a massive scalar field in two dimensions, J. Stat. Mech. 0512 (2005) P12012 [cond-mat/0511014] [INSPIRE].
T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS 2 /CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].
P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].
P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].
M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
M. Headrick, A. Lawrence and M. Roberts, Bose-Fermi duality and entanglement entropies, J. Stat. Mech. 1302 (2013) P02022 [arXiv:1209.2428] [INSPIRE].
A. Lewkowycz, R.C. Myers and M. Smolkin, Observations on entanglement entropy in massive QFT’s, JHEP 04 (2013) 017 [arXiv:1210.6858] [INSPIRE].
C.P. Herzog and T. Nishioka, Entanglement entropy of a massive fermion on a torus, JHEP 03 (2013) 077 [arXiv:1301.0336] [INSPIRE].
T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
T. Faulkner, The Entanglement Rényi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
H. Casini and M. Huerta, Entanglement entropy for the N-sphere, Phys. Lett. B 694 (2010) 167 [arXiv:1007.1813] [INSPIRE].
I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Rényi entropies for free field theories, JHEP 04 (2012) 074 [arXiv:1111.6290] [INSPIRE].
D. Fursaev, Entanglement Rényi entropies in conformal field theories and holography, JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].
M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement entropy in the O(n) model, Phys. Rev. B 80 (2009) 115122.
I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement entropy of 3 − D conformal gauge theories with many flavors, JHEP 05 (2012) 036 [arXiv:1112.5342] [INSPIRE].
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].
S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].
G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].
C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].
A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].
D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].
N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].
D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].
I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].
A. Amariti and M. Siani, Z-extremization and F-theorem in Chern-Simons matter theories, JHEP 10 (2011) 016 [arXiv:1105.0933] [INSPIRE].
T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].
H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].
Y. Imamura and D. Yokoyama, \( \mathcal{N}=2 \) supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].
N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].
Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].
E. Witten, Supersymmetric index of three-dimensional gauge theory, hep-th/9903005 [INSPIRE].
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].
T. Nishioka and K. Yonekura, On RG Flow of τ RR for Supersymmetric Field Theories in Three-Dimensions, JHEP 05 (2013) 165 [arXiv:1303.1522] [INSPIRE].
E. Perlmutter, A universal feature of CFT Rényi entropy, arXiv:1308.1083 [INSPIRE].
K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].
J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, \( \mathrm{SL}\left( {2,\mathbb{Z}} \right) \) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].
J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].
J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in \( \mathcal{N}=2 \) supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].
K. Jensen and A. Karch, ABJM mirrors and a duality of dualities, JHEP 09 (2009) 004 [arXiv:0906.3013] [INSPIRE].
O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].
A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].
V. Niarchos, Seiberg duality in Chern-Simons theories with fundamental and adjoint matter, JHEP 11 (2008) 001 [arXiv:0808.2771] [INSPIRE].
A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [INSPIRE].
A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].
B. Willett and I. Yaakov, \( \mathcal{N}=2 \) Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [INSPIRE].
F. Benini, C. Closset and S. Cremonesi, Comments on 3D Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].
I. Yaakov, Redeeming Bad Theories, arXiv:1303.2769 [INSPIRE].
Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].
H. Kim and J. Park, Aharony Dualities for 3d Theories with Adjoint Matter, JHEP 06 (2013) 106 [arXiv:1302.3645] [INSPIRE].
D. Bashkirov, Aharony duality and monopole operators in three dimensions, arXiv:1106.4110 [INSPIRE].
D. Bashkirov and A. Kapustin, Dualities between \( \mathcal{N}=8 \) superconformal field theories in three dimensions, JHEP 05 (2011) 074 [arXiv:1103.3548] [INSPIRE].
A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE].
C. Krattenthaler, V. Spiridonov and G. Vartanov, Superconformal indices of three-dimensional theories related by mirror symmetry, JHEP 06 (2011) 008 [arXiv:1103.4075] [INSPIRE].
A. Kapustin, H. Kim and J. Park, Dualities for 3D theories with tensor matter, JHEP 12 (2011) 087 [arXiv:1110.2547] [INSPIRE].
C. Hwang, K.-J. Park and J. Park, Evidence for Aharony duality for orthogonal gauge groups, JHEP 11 (2011) 011 [arXiv:1109.2828] [INSPIRE].
C. Hwang, H. Kim, K.-J. Park and J. Park, Index computation for 3D Chern-Simons matter theory: test of Seiberg-like duality, JHEP 09 (2011) 037 [arXiv:1107.4942] [INSPIRE].
A. Kapustin, B. Willett and I. Yaakov, Exact results for supersymmetric abelian vortex loops in 2 + 1 dimensions, JHEP 06 (2013) 099 [arXiv:1211.2861] [INSPIRE].
N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3D supersymmetric theories, arXiv:1211.3409 [INSPIRE].
A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].
O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of \( \mathcal{N}=2 \) supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].
T. Grover and A. Vishwanath, Quantum Criticality in Topological Insulators and Superconductors: Emergence of Strongly Coupled Majoranas and Supersymmetry, arXiv:1206.1332 [INSPIRE].
S.-S. Lee, Emergence of supersymmetry at a critical point of a lattice model, Phys. Rev. B 76 (2007) 075103 [cond-mat/0611658] [INSPIRE].
O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N}=6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
D. Martelli and J. Sparks, The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere, Nucl. Phys. B 866 (2013) 72 [arXiv:1111.6930] [INSPIRE].
K. Życzkowski, Rényi extrapolation of shannon entropy, Open Syst. Inf. Dyn. 10 (2003) 297.
F.J. van de Bult, Hyperbolic hypergeometric functions, Ph.D. Thesis, University of Amsterdam, Amsterdam The Netherlands (2007).
N.N. Kurokawa and S.-y. Koyama, Multiple sine functions, Forum Math. 15 (2003) 839.
S.N. Ruijsenaars, On barnes’ multiple zeta and gamma functions, Adv. Math. 156 (2000) 107.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1306.2958
Rights and permissions
About this article
Cite this article
Nishioka, T., Yaakov, I. Supersymmetric Rényi entropy. J. High Energ. Phys. 2013, 155 (2013). https://doi.org/10.1007/JHEP10(2013)155
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2013)155