Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Supersymmetric Rényi entropy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider 3d \( \mathcal{N}\geq 2 \) superconformal field theories on a branched covering of a three-sphere. The Rényi entropy of a CFT is given by the partition function on this space, but conical singularities break the supersymmetry preserved in the bulk. We turn on a compensating R-symmetry gauge field and compute the partition function using localization. We define a supersymmetric observable, called the super Rényi entropy, parametrized by a real number q. We show that the super Rényi entropy is duality invariant and reduces to entanglement entropy in the q → 1 limit. We provide some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009)504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  Google Scholar 

  2. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Rényi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Google Scholar 

  6. H. Casini, C. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].

    Google Scholar 

  7. H. Casini and M. Huerta, Entanglement and alpha entropies for a massive scalar field in two dimensions, J. Stat. Mech. 0512 (2005) P12012 [cond-mat/0511014] [INSPIRE].

    Article  Google Scholar 

  8. T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS 2 /CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  10. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].

    MathSciNet  Google Scholar 

  11. M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  12. M. Headrick, A. Lawrence and M. Roberts, Bose-Fermi duality and entanglement entropies, J. Stat. Mech. 1302 (2013) P02022 [arXiv:1209.2428] [INSPIRE].

    MathSciNet  Google Scholar 

  13. A. Lewkowycz, R.C. Myers and M. Smolkin, Observations on entanglement entropy in massive QFTs, JHEP 04 (2013) 017 [arXiv:1210.6858] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C.P. Herzog and T. Nishioka, Entanglement entropy of a massive fermion on a torus, JHEP 03 (2013) 077 [arXiv:1301.0336] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

  16. T. Faulkner, The Entanglement Rényi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  17. H. Casini and M. Huerta, Entanglement entropy for the N-sphere, Phys. Lett. B 694 (2010) 167 [arXiv:1007.1813] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Rényi entropies for free field theories, JHEP 04 (2012) 074 [arXiv:1111.6290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Fursaev, Entanglement Rényi entropies in conformal field theories and holography, JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement entropy in the O(n) model, Phys. Rev. B 80 (2009) 115122.

    Article  ADS  Google Scholar 

  21. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement entropy of 3 − D conformal gauge theories with many flavors, JHEP 05 (2012) 036 [arXiv:1112.5342] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Amariti and M. Siani, Z-extremization and F-theorem in Chern-Simons matter theories, JHEP 10 (2011) 016 [arXiv:1105.0933] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

    ADS  Google Scholar 

  36. Y. Imamura and D. Yokoyama, \( \mathcal{N}=2 \) supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].

    ADS  Google Scholar 

  37. N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. E. Witten, Supersymmetric index of three-dimensional gauge theory, hep-th/9903005 [INSPIRE].

  40. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

    ADS  Google Scholar 

  42. T. Nishioka and K. Yonekura, On RG Flow of τ RR for Supersymmetric Field Theories in Three-Dimensions, JHEP 05 (2013) 165 [arXiv:1303.1522] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. E. Perlmutter, A universal feature of CFT Rényi entropy, arXiv:1308.1083 [INSPIRE].

  44. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, \( \mathrm{SL}\left( {2,\mathbb{Z}} \right) \) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in \( \mathcal{N}=2 \) supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].

    Article  ADS  Google Scholar 

  48. K. Jensen and A. Karch, ABJM mirrors and a duality of dualities, JHEP 09 (2009) 004 [arXiv:0906.3013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. V. Niarchos, Seiberg duality in Chern-Simons theories with fundamental and adjoint matter, JHEP 11 (2008) 001 [arXiv:0808.2771] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [INSPIRE].

  53. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. B. Willett and I. Yaakov, \( \mathcal{N}=2 \) Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [INSPIRE].

  55. F. Benini, C. Closset and S. Cremonesi, Comments on 3D Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. I. Yaakov, Redeeming Bad Theories, arXiv:1303.2769 [INSPIRE].

  57. Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. H. Kim and J. Park, Aharony Dualities for 3d Theories with Adjoint Matter, JHEP 06 (2013) 106 [arXiv:1302.3645] [INSPIRE].

    Article  ADS  Google Scholar 

  59. D. Bashkirov, Aharony duality and monopole operators in three dimensions, arXiv:1106.4110 [INSPIRE].

  60. D. Bashkirov and A. Kapustin, Dualities between \( \mathcal{N}=8 \) superconformal field theories in three dimensions, JHEP 05 (2011) 074 [arXiv:1103.3548] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE].

  62. C. Krattenthaler, V. Spiridonov and G. Vartanov, Superconformal indices of three-dimensional theories related by mirror symmetry, JHEP 06 (2011) 008 [arXiv:1103.4075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. A. Kapustin, H. Kim and J. Park, Dualities for 3D theories with tensor matter, JHEP 12 (2011) 087 [arXiv:1110.2547] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. C. Hwang, K.-J. Park and J. Park, Evidence for Aharony duality for orthogonal gauge groups, JHEP 11 (2011) 011 [arXiv:1109.2828] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. C. Hwang, H. Kim, K.-J. Park and J. Park, Index computation for 3D Chern-Simons matter theory: test of Seiberg-like duality, JHEP 09 (2011) 037 [arXiv:1107.4942] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. A. Kapustin, B. Willett and I. Yaakov, Exact results for supersymmetric abelian vortex loops in 2 + 1 dimensions, JHEP 06 (2013) 099 [arXiv:1211.2861] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3D supersymmetric theories, arXiv:1211.3409 [INSPIRE].

  68. A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of \( \mathcal{N}=2 \) supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. T. Grover and A. Vishwanath, Quantum Criticality in Topological Insulators and Superconductors: Emergence of Strongly Coupled Majoranas and Supersymmetry, arXiv:1206.1332 [INSPIRE].

  71. S.-S. Lee, Emergence of supersymmetry at a critical point of a lattice model, Phys. Rev. B 76 (2007) 075103 [cond-mat/0611658] [INSPIRE].

    Article  ADS  Google Scholar 

  72. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N}=6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. D. Martelli and J. Sparks, The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere, Nucl. Phys. B 866 (2013) 72 [arXiv:1111.6930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. K. Życzkowski, Rényi extrapolation of shannon entropy, Open Syst. Inf. Dyn. 10 (2003) 297.

    Article  MathSciNet  MATH  Google Scholar 

  75. F.J. van de Bult, Hyperbolic hypergeometric functions, Ph.D. Thesis, University of Amsterdam, Amsterdam The Netherlands (2007).

  76. N.N. Kurokawa and S.-y. Koyama, Multiple sine functions, Forum Math. 15 (2003) 839.

    Google Scholar 

  77. S.N. Ruijsenaars, On barnesmultiple zeta and gamma functions, Adv. Math. 156 (2000) 107.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuma Nishioka.

Additional information

ArXiv ePrint: 1306.2958

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishioka, T., Yaakov, I. Supersymmetric Rényi entropy. J. High Energ. Phys. 2013, 155 (2013). https://doi.org/10.1007/JHEP10(2013)155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)155

Keywords