Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey

  • Published:
Results in Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For a convex body C in a finite dimensional real Banach space M d denote by \({\triangle(C)}\) its thickness, i.e., its minimal width with respect to the norm. A convex body \({R \subset M^d}\) is said to be reduced if \({\triangle(C) < \triangle(R)}\) for each convex body C properly contained in R. The concept of reduced bodies is particularly useful for solving volume-minimizing problems in the area of convexity, and it is also important as extension of basic notions from convexity and functional analysis. Namely, on the one hand the class of reduced bodies is a “dualization” of the concept of complete sets (and, in Euclidean space, that of constant width). On the other hand, it forms a proper superset of the class of complete sets. We present the recent knowledge on this class of convex bodies in finite dimensional real Banach spaces. First we collect general properties of arbitrary reduced bodies. For example, we present constructions supporting our conjecture that in any normed space of dimension larger than 2 there are reduced bodies of unit thickness and diameter at least λ, for every positive number λ. Then we will lay special emphasize on reduced polytopes, and finally on the geometric description of planar reduced bodies. The survey also presents several research problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso J., Martini H., Spirova M.: On reduced triangles in normed planes. Results Math. 64, 269–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Averkov G.: On the geometry of simplices in Minkowski spaces. Stud. Univ. Žilina, Math. Ser. 14, 1–13 (2001)

    Google Scholar 

  3. Averkov G.: On cross-sections in Minkowski spaces. Extracta Math. 18, 201–208 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Averkov G.: On planar convex bodies of given Minkowskian thickness and least possible area. Arch. Math. 84, 183–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Averkov G.: On the inequality for volume and Minkowski thickness. Canad. Math. Bull. 49, 185–195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Averkov G., Martini H.: On reduced polytopes and antipodality. Adv. Geom. 8, 615–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Averkov G., Martini H.: On pyramids and reducedness. Period. Math. Hung. 57(2), 117–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Averkov G., Martini H.: On the volume of the convex hull of d + 1 segments in R d. Publ. Math. Debrecen 73, 497–500 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Averkov G., Makai E., Martini H.: Characterizations of central symmetry for convex bodies in Minkowski spaces. Studia Sci. Math. Hungar. 46, 493–514 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Barbier E.: Note sur le probléme de l’aiguille et le jeu du joint couvert. J. Math. Pures Appl. 5, 273–286 (1860)

    Google Scholar 

  11. Brazil M., Zachariasen M.: Steiner threes for fixed orientation metrics. J. Global Optim. 43, 141–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chakerian G.D., Ghandehari M.A.: The Fermat problem in Minkowski spaces. Geom. Dedicata 17, 227–238 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chakerian G.D., Groemer H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and its Applications, pp. 49–96. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  14. Dekster B.V.: Reduced, strictly convex plane figure is of constant width. J. Geom. 26, 77–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dekster B.V.: On reduced convex bodies. Israel J. Math. 56, 247–256 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eggleston H.G.: Convexity. Cambridge University Press, Cambridge (1958)

    Book  MATH  Google Scholar 

  17. Fabińska E., Lassak M.: Reduced bodies in normed planes. Israel J. Math. 161, 75–88 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giannopoulos A.A., Milman V.D.: Euclidean structure in finite dimensional normed spaces. In: Johnson, W.B., Lindenstraus, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 1, pp. 707–779. North-Holland, Amsterdam (2001)

    Chapter  Google Scholar 

  19. Groemer H.: Extremal convex sets. Monatsh. Math. 96, 29–39 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gritzmann P., Klee V.: Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7, 225–280 (1992)

    Article  MathSciNet  Google Scholar 

  21. Gritzmann P., Lassak M.: Estimates for the minimal width of polytopes inscribed in convex bodies. Discrete Comput. Geom. 4, 627–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heil, E.: Kleinste konvexe Körper gegebener Dicke, Preprint No. 453, Fachbereich Mathematik der TH Darmstadt (1978)

  23. Heil E., Martini H.: Special convex bodies. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 347–385. North-Holland, Amsterdam (1963)

    Google Scholar 

  24. Heppes A.: Line transversals in large T(3)- and T(4)-families of congruent discs. Discrete Comput. Geom. 40, 312–318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson W.B., Lindenstrauss J.: Basic concepts in the geometry of Banach spaces. In: Johnson, W.B., Lindenstraus, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 1, pp. 1–84. North-Holland, Amsterdam (2001)

    Chapter  Google Scholar 

  26. Lassak M.: Reduced convex bodies in the plane. Israel J. Math. 70, 365–379 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lassak, M.: Contributed Problem No. 12. In: Bisztriczky, T., McMullen, P., Schneider, R., Ivić-Weiss A. (eds.) Polytopes—Abstract, Convex and Computational, NATO ASI Series, Ser. C, Vol. 440. Kluwer, Dordrecht (1994)

  28. Lassak M.: On the smallest disk containing a planar reduced convex body. Arch. Math. 80, 553–560 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lassak M.: Area of reduced polygons. Publ. Math. Debrecen 67, 349–354 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Lassak M.: Characterizations of reduced polytopes in finite-dimensional normed spaces. Beitr. Algebra Geom. 47, 559–566 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Lassak M.: Approximation of bodies of constant width and reduced bodies in a normed plane. J. Convex Anal. 19, 865–874 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Lassak M., Martini H.: Reduced bodies in Minkowski space. Acta Math. Hungar. 106, 17–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lassak M., Martini H.: Reduced convex bodies in Euclidean space—a survey. Expo. Math. 29, 204–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martini H., Mustafaev Z.: On Reuleaux triangles in Minkowski planes. Beitr. Algebra Geom. 48, 225–235 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Martini H., Soltan V.: Antipodality properties of finite sets in Euclidean space. Discrete Math. 290, 221–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Martini H., Swanepoel K.J.: Non-planar simplices are not reduced. Publ. Math. Debrecen 64, 101–106 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Martini H., Swanepoel K.J.: Antinorms and Radon curves. Aequationes Math. 72, 110–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Martini H., Swanepoel K.J.: The geometry of Minkowski spaces—a survey. Part II. Expo. Math. 22, 93–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Martini H., Swanepoel K.J., Weiss G.: The geometry of Minkowski spaces—a survey. Part I. Expo. Math. 19, 97–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Martini H., Swanepoel K.J., Weiss G.: The Fermat-Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Martini H., Wenzel H.: Tetrahedra are not reduced. Appl. Math. Lett. 15, 881–884 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mel’nikov M.S.: Dependence of volume and diameter of sets in n-dimensional Banach space (in Russian). Uspehi Mat. Nauk 18, 165–170 (1963)

    MATH  Google Scholar 

  43. Moreno J.P., Schneider R.: Diametrically complete sets in Minkowski spaces. Israel J. Math. 191, 701–720 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Paiva, J.C.A., Thompson, A.C.: Volumes in normed and Finsler spaces, Riemann-Finsler Geometry. MSRI Publications, vol. 49 (2004)

  45. Thompson A.C.: Minkowski Geometry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  46. Valentine F.A.: Convex Sets. Robert E. Krieger Publ. Co., Huntington (1976)

    MATH  Google Scholar 

  47. Wills M.D.: Hausdorff distance and convex sets. J. Convex Anal. 14, 109–118 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Yost D.: Irreducible convex sets. Mathematika 38, 134–155 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassak, M., Martini, H. Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey. Results. Math. 66, 405–426 (2014). https://doi.org/10.1007/s00025-014-0384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-014-0384-4

Mathematics Subject Classification

Keywords