Abstract
For a convex body C in a finite dimensional real Banach space M d denote by \({\triangle(C)}\) its thickness, i.e., its minimal width with respect to the norm. A convex body \({R \subset M^d}\) is said to be reduced if \({\triangle(C) < \triangle(R)}\) for each convex body C properly contained in R. The concept of reduced bodies is particularly useful for solving volume-minimizing problems in the area of convexity, and it is also important as extension of basic notions from convexity and functional analysis. Namely, on the one hand the class of reduced bodies is a “dualization” of the concept of complete sets (and, in Euclidean space, that of constant width). On the other hand, it forms a proper superset of the class of complete sets. We present the recent knowledge on this class of convex bodies in finite dimensional real Banach spaces. First we collect general properties of arbitrary reduced bodies. For example, we present constructions supporting our conjecture that in any normed space of dimension larger than 2 there are reduced bodies of unit thickness and diameter at least λ, for every positive number λ. Then we will lay special emphasize on reduced polytopes, and finally on the geometric description of planar reduced bodies. The survey also presents several research problems.
Similar content being viewed by others
References
Alonso J., Martini H., Spirova M.: On reduced triangles in normed planes. Results Math. 64, 269–288 (2013)
Averkov G.: On the geometry of simplices in Minkowski spaces. Stud. Univ. Žilina, Math. Ser. 14, 1–13 (2001)
Averkov G.: On cross-sections in Minkowski spaces. Extracta Math. 18, 201–208 (2003)
Averkov G.: On planar convex bodies of given Minkowskian thickness and least possible area. Arch. Math. 84, 183–192 (2005)
Averkov G.: On the inequality for volume and Minkowski thickness. Canad. Math. Bull. 49, 185–195 (2006)
Averkov G., Martini H.: On reduced polytopes and antipodality. Adv. Geom. 8, 615–626 (2008)
Averkov G., Martini H.: On pyramids and reducedness. Period. Math. Hung. 57(2), 117–120 (2008)
Averkov G., Martini H.: On the volume of the convex hull of d + 1 segments in R d. Publ. Math. Debrecen 73, 497–500 (2008)
Averkov G., Makai E., Martini H.: Characterizations of central symmetry for convex bodies in Minkowski spaces. Studia Sci. Math. Hungar. 46, 493–514 (2009)
Barbier E.: Note sur le probléme de l’aiguille et le jeu du joint couvert. J. Math. Pures Appl. 5, 273–286 (1860)
Brazil M., Zachariasen M.: Steiner threes for fixed orientation metrics. J. Global Optim. 43, 141–169 (2009)
Chakerian G.D., Ghandehari M.A.: The Fermat problem in Minkowski spaces. Geom. Dedicata 17, 227–238 (1985)
Chakerian G.D., Groemer H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and its Applications, pp. 49–96. Birkhäuser, Basel (1983)
Dekster B.V.: Reduced, strictly convex plane figure is of constant width. J. Geom. 26, 77–81 (1986)
Dekster B.V.: On reduced convex bodies. Israel J. Math. 56, 247–256 (1986)
Eggleston H.G.: Convexity. Cambridge University Press, Cambridge (1958)
Fabińska E., Lassak M.: Reduced bodies in normed planes. Israel J. Math. 161, 75–88 (2007)
Giannopoulos A.A., Milman V.D.: Euclidean structure in finite dimensional normed spaces. In: Johnson, W.B., Lindenstraus, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 1, pp. 707–779. North-Holland, Amsterdam (2001)
Groemer H.: Extremal convex sets. Monatsh. Math. 96, 29–39 (1983)
Gritzmann P., Klee V.: Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7, 225–280 (1992)
Gritzmann P., Lassak M.: Estimates for the minimal width of polytopes inscribed in convex bodies. Discrete Comput. Geom. 4, 627–635 (1989)
Heil, E.: Kleinste konvexe Körper gegebener Dicke, Preprint No. 453, Fachbereich Mathematik der TH Darmstadt (1978)
Heil E., Martini H.: Special convex bodies. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 347–385. North-Holland, Amsterdam (1963)
Heppes A.: Line transversals in large T(3)- and T(4)-families of congruent discs. Discrete Comput. Geom. 40, 312–318 (2008)
Johnson W.B., Lindenstrauss J.: Basic concepts in the geometry of Banach spaces. In: Johnson, W.B., Lindenstraus, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 1, pp. 1–84. North-Holland, Amsterdam (2001)
Lassak M.: Reduced convex bodies in the plane. Israel J. Math. 70, 365–379 (1990)
Lassak, M.: Contributed Problem No. 12. In: Bisztriczky, T., McMullen, P., Schneider, R., Ivić-Weiss A. (eds.) Polytopes—Abstract, Convex and Computational, NATO ASI Series, Ser. C, Vol. 440. Kluwer, Dordrecht (1994)
Lassak M.: On the smallest disk containing a planar reduced convex body. Arch. Math. 80, 553–560 (2003)
Lassak M.: Area of reduced polygons. Publ. Math. Debrecen 67, 349–354 (2005)
Lassak M.: Characterizations of reduced polytopes in finite-dimensional normed spaces. Beitr. Algebra Geom. 47, 559–566 (2006)
Lassak M.: Approximation of bodies of constant width and reduced bodies in a normed plane. J. Convex Anal. 19, 865–874 (2012)
Lassak M., Martini H.: Reduced bodies in Minkowski space. Acta Math. Hungar. 106, 17–26 (2005)
Lassak M., Martini H.: Reduced convex bodies in Euclidean space—a survey. Expo. Math. 29, 204–219 (2011)
Martini H., Mustafaev Z.: On Reuleaux triangles in Minkowski planes. Beitr. Algebra Geom. 48, 225–235 (2007)
Martini H., Soltan V.: Antipodality properties of finite sets in Euclidean space. Discrete Math. 290, 221–228 (2005)
Martini H., Swanepoel K.J.: Non-planar simplices are not reduced. Publ. Math. Debrecen 64, 101–106 (2004)
Martini H., Swanepoel K.J.: Antinorms and Radon curves. Aequationes Math. 72, 110–138 (2006)
Martini H., Swanepoel K.J.: The geometry of Minkowski spaces—a survey. Part II. Expo. Math. 22, 93–144 (2004)
Martini H., Swanepoel K.J., Weiss G.: The geometry of Minkowski spaces—a survey. Part I. Expo. Math. 19, 97–142 (2001)
Martini H., Swanepoel K.J., Weiss G.: The Fermat-Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)
Martini H., Wenzel H.: Tetrahedra are not reduced. Appl. Math. Lett. 15, 881–884 (2002)
Mel’nikov M.S.: Dependence of volume and diameter of sets in n-dimensional Banach space (in Russian). Uspehi Mat. Nauk 18, 165–170 (1963)
Moreno J.P., Schneider R.: Diametrically complete sets in Minkowski spaces. Israel J. Math. 191, 701–720 (2012)
Paiva, J.C.A., Thompson, A.C.: Volumes in normed and Finsler spaces, Riemann-Finsler Geometry. MSRI Publications, vol. 49 (2004)
Thompson A.C.: Minkowski Geometry. Cambridge University Press, Cambridge (1996)
Valentine F.A.: Convex Sets. Robert E. Krieger Publ. Co., Huntington (1976)
Wills M.D.: Hausdorff distance and convex sets. J. Convex Anal. 14, 109–118 (2007)
Yost D.: Irreducible convex sets. Mathematika 38, 134–155 (1991)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lassak, M., Martini, H. Reduced Convex Bodies in Finite Dimensional Normed Spaces: A Survey. Results. Math. 66, 405–426 (2014). https://doi.org/10.1007/s00025-014-0384-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00025-014-0384-4