Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Recommender systems based on user reviews: the state of the art

  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

In recent years, a variety of review-based recommender systems have been developed, with the goal of incorporating the valuable information in user-generated textual reviews into the user modeling and recommending process. Advanced text analysis and opinion mining techniques enable the extraction of various types of review elements, such as the discussed topics, the multi-faceted nature of opinions, contextual information, comparative opinions, and reviewers’ emotions. In this article, we provide a comprehensive overview of how the review elements have been exploited to improve standard content-based recommending, collaborative filtering, and preference-based product ranking techniques. The review-based recommender system’s ability to alleviate the well-known rating sparsity and cold-start problems is emphasized. This survey classifies state-of-the-art studies into two principal branches: review-based user profile building and review-based product profile building. In the user profile sub-branch, the reviews are not only used to create term-based profiles, but also to infer or enhance ratings. Multi-faceted opinions can further be exploited to derive the weight/value preferences that users place on particular features. In another sub-branch, the product profile can be enriched with feature opinions or comparative opinions to better reflect its assessment quality. The merit of each branch of work is discussed in terms of both algorithm development and the way in which the proposed algorithms are evaluated. In addition, we discuss several future trends based on the survey, which may inspire investigators to pursue additional studies in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://www.tripadvisor.com/.

References

  • Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106(1), 41–56 (2011)

    Article  Google Scholar 

  • Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed recommender: basing recommendations on consumer product reviews. IEEE Intell. Syst. 22(3), 39–47 (2007)

    Article  Google Scholar 

  • Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intell. Syst. 22(3), 48–55 (2007)

    Article  Google Scholar 

  • Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  • Adomavicius, G., Tuzhilin, A.: Context-aware Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  • Al-Taie, M.Z.: Explanations in recommender systems: overview and research approaches. In: Proceedings of the 14th International Arab Conference on Information Technology, Khartoum, Sudan, ACIT’13 (2013)

  • Bach, F., Jordan, M.I.: A probabilistic interpretation of canonical correlation analysis. Technical Report 688, Department of Statistics, University of California, Berkeley, USA (2005)

  • Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  • Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Pers. Ubiquitous Comput. 16(5), 507–526 (2012)

    Article  Google Scholar 

  • Beilin, L., Yi, S.: Survey of personalized recommendation based on society networks analysis. In: Proceedings of the 6th International Conference on Information Management, Innovation Management and Industrial Engineering, Xi’an, China, ICIII’ 13, vol 3, pp 337–340 (2013)

  • Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  • Celma, O., Herrera, P.: A new approach to evaluating novel recommendations. In: Proceedings of the 2nd ACM International Conference on Recommender Systems, Lausanne, Switzerland, ACM, RecSys’08, pp 179–186 (2008)

  • Chatterjee, P.: Online reviews: do consumers use them? Advan. Consum. Res. 28, 129–133 (2001)

    Google Scholar 

  • Chee, S.H.S., Han, J., Wang, K.: Rectree: An efficient collaborative filtering method. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) Proceedings of the 3rd International Conference on Data Warehousing and Knowledge Discovery, Munich, Germany, Springer-Verlag, DaWaK’01, pp 141–151 (2001)

  • Chelcea, S., Gallais, G., Trousse, B.: A personalized recommender system for travel information. In: Proceedings of the 1st French-speaking Conference on Mobility and Ubiquity Computing, Nice, France, ACM, UbiMob’04, pp 143–150 (2004)

  • Chen, G., Chen, L.: Recommendation based on contextual opinions. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.J. (eds.) Proceedings of the 22nd Conference on User Modeling, Adaptation, and Personalization, Alborg, Denmark, Springer, UMAP’14, pp 61–73 (2014)

  • Chen, L., Pu, P.: Survey of preference elicitation methods. Tech. Rep. IC/200467, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland (2004)

  • Chen, L., Pu, P.: Experiments on the preference-based organization interface in recommender systems. ACM Trans. Comput. Hum. Interact. 17(1), 5 (2010)

    Google Scholar 

  • Chen, L., Wang, F.: Preference-based clustering reviews for augmenting e-commerce recommendation. Knowl. Based Syst. 50, 44–59 (2013)

    Article  Google Scholar 

  • Chen, L., Wang, F.: Sentiment-enhanced explanation of product recommendations. In: Proceedings of the 23rd International Conference on World Wide Web Companion, Seoul, Korea, ACM, WWW Companion’14, pp 239–240 (2014)

  • Chen, L., Zeng, W., Yuan, Q.: A unified framework for recommending items, groups and friends in social media environment via mutual resource fusion. Expert Syst. Appl. 40(8), 2889–2903 (2013)

    Article  Google Scholar 

  • Chevalier, J.A., Mayzlin, D.: The effect of word of mouth on sales: online book reviews. J. Mark. Res. 43(3), 345–354 (2006)

    Article  Google Scholar 

  • Dong, R., O’Mahony, MP., Schaal, M., McCarthy, K., Smyth, B.: Sentimental product recommendation. In: Proceedings of the 7th ACM International Conference on Recommender Systems, Hong Kong, China, ACM, RecSys’13, pp 411–414 (2013a)

  • Dong, R., Schaal, M., Oahony, M., McCarthy, K., Smyth, B.: Opinionated product recommendation. In: Delany, S.J., Ontanon, S. (eds.) Proceedings of the 21st International Conference on Case-Based Reasoning, Saratoga Springs, NY, USA, Springer, Berlin Heidelberg, ICCBR’ 13, pp 44–58 (2013b)

  • Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, Genoa, Italy, LREC’06, vol 6, pp 417–422 (2006)

  • Faridani, S.: Using canonical correlation analysis for generalized sentiment analysis, product recommendation and search. In: Proceedings of the 5th ACM Conference on Recommender Systems, Chicago, Illinois, USA, ACM, RecSys’11, pp 355–358 (2011)

  • Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  • Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2000)

    Article  Google Scholar 

  • Ganapathibhotla, M., Liu, B.: Mining opinions in comparative sentences. In: Proceedings of the 22nd International Conference on Computational Linguistics - Volume 1, Manchester, UK, Association for Computational Linguistics, COLING’08, pp 241–248 (2008)

  • Ganu, G., Kakodkar, Y., Marian, A.: Improving the quality of predictions using textual information in online user reviews. Inf. Syst. 38(1), 1–15 (2013)

    Article  Google Scholar 

  • Garcia Esparza, S., O’Mahony, M.P., Smyth, B.: Effective product recommendation using the real-time web. In: Bramer, M., Petridis, M., Hopgood, A. (eds.) Proceedings of the 30th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, Springer, pp 5–18 (2010)

  • Garcia Esparza, S., O’Mahony, M.P., Smyth, B.: A multi-criteria evaluation of a user-generated content based recommender system. In: Proceeding of the 3rd Workshop on Recommender Systems and the Social Web in RecSys’11, Chicago, Illinois, USA, pp 49–56 (2011)

  • Gonzalez, G., de la Rosa, J.L., Montaner, M., Delfin, S.: Embedding emotional context in recommender systems. In: Proceedings of the International Workshop on Web Personalisation, Recommender Systems and Intelligent User Interfaces in ICDE’07, Istanbul, Turkey, IEEE, pp 845–852 (2007)

  • Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, Spain, ACM, RecSys’10, pp 199–206 (2010)

  • Hariri, N., Mobasher, B., Burke, R., Zheng, Y.: Context-aware recommendation based on review mining. In: Proceedings of the 9th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems in IJCAI’11, Barcelona, Spain, pp 30–36 (2011)

  • Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  • Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1), 89–115 (2004)

    Article  Google Scholar 

  • Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The lumiere project: Bayesian user modeling for inferring the goals and needs of software users. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin, USA, Morgan Kaufmann Publishers Inc., pp 256–265 (1998)

  • Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, ACM, KDD’04, pp 168–177 (2004a)

  • Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of the 19th National Conference on Artifical Intelligence, San Jose, California, USA, AAAI Press, AAAI’04, pp 755–760 (2004b)

  • Jakob, N., Weber, S.H., Müller, M.C., Gurevych, I.: Beyond the stars: Exploiting free-text user reviews to improve the accuracy of movie recommendations. In: Proceedings of the 1st International Workshop on Topic-Sentiment Analysis for Mass Opinion in CIKM’09, Hong Kong, China, ACM, TSA’09, pp 57–64 (2009)

  • Jamroonsilp, S., Prompoon, N.: Analyzing software reviews for software quality-based ranking. In: Proceedings of the 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, IEEE, ECTI-CON’13, pp 1–6 (2013)

  • Jin, W., Ho, H.H., Srihari, R.K.: Opinionminer: A novel machine learning system for web opinion mining and extraction. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, ACM, KDD’09, pp 1195–1204 (2009)

  • Jindal, N., Liu, B.: Mining comparative sentences and relations. In: Proceedings of the 21st National Conference on Artificial Intelligence - Volume 2, Boston, Massachusetts, USA, AAAI Press, AAAI’06, pp 1331–1336 (2006)

  • Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 1st International Conference on Web Search and Data Mining, Palo Alto, California, USA, ACM, WSDM’08, pp 219–230 (2008)

  • Kamps, J., Mokken, R.J., Marx, M., de Rijke, M.: Using WordNet to measure semantic orientation of adjectives. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, Portugal, European Language Resources Association, LREC’04, vol IV, pp 1115–1118 (2004)

  • Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  • Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, Y., Srivastava, J.: Impact of social influence in e-commerce decision making. In: Proceedings of the 9th International Conference on Electronic Commerce, Minneapolis, MN, USA, ACM, ICEC’07, pp 293–302 (2007)

  • Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Model. User-Adapted Interact. 22(4–5), 441–504 (2012)

    Article  Google Scholar 

  • Koren, Y., Bell, R.: Advances in Collaborative Filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, US (2011)

    Chapter  Google Scholar 

  • Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  • Leung, C.W.K., Chan, S.C.F., Chung, F.: Integrating collaborative filtering and sentiment analysis: A rating inference approach. In: Proceedings of the ECAI 2006 Workshop on Recommender Systems, Riva del Garda, Italy, pp 62–66 (2006)

  • Levi, A., Mokryn, O., Diot, C., Taft, N.: Finding a needle in a haystack of reviews: Cold start context-based hotel recommender system. In: Proceedings of the 6th ACM International Conference on Recommender Systems, Dublin, Ireland, ACM, RecSys’12, pp 115–122 (2012)

  • Li, S., Zha, Z.J., Ming, Z., Wang, M., Chua, T.S., Guo, J., Xu, W.: Product comparison using comparative relations. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, ACM, SIGIR’11, pp 1151–1152 (2011)

  • Li, Y., Nie, J., Zhang, Y., Wang, B., Yan, B., Weng, F.: Contextual recommendation based on text mining. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, Beijing, China, Association for Computational Linguistics, COLING’10, pp 692–700 (2010)

  • Lippert, C., Weber, S.H., Huang, Y., Tresp, V., Schubert, M., Kriegel, H.P.: Relation-prediction in multi-relational domains using matrix factorization. In: Proceedings of the Workshop on Structured Input-Structured Output in NIPS’08, Vancouver, B.C., Canada (2008)

  • Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, 2nd edn, pp. 627–666. Taylor and Francis Group, London (2010)

    Google Scholar 

  • Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  • Liu, B., Hu, M., Cheng, J.: Opinion observer: Analyzing and comparing opinions on the web. In: Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan, ACM, WWW’05, pp 342–351 (2005)

  • Liu, H., He, J., Wang, T., Song, W., Du, X.: Combining user preferences and user opinions for accurate recommendation. Electron. Commer. Res. Appl. 12(1), 14–23 (2013)

    Article  Google Scholar 

  • Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Lorenzi, F., Ricci, F.: Case-based recommender systems: A unifying view. In: Mobasher, B., Anand, S.S. (eds.) Proceedings of the IJCAI 2003 Workshop on Intelligent Techniques for Web Personalization, Acapulco, Mexico, Springer-Verlag, ITWP’03, pp 89–113 (2005)

  • Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, 1st edn. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L., Jäschke, R., Hotho, A., Stumme, G., Symeonidis, P.: Social tagging recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 615–644. Springer, Ljubljana (2011)

    Chapter  Google Scholar 

  • Martin, L., Pu, P.: Prediction of helpful reviews using emotions extraction. In: Proceedings of the 28th National Conference on Artificial Intelligence, Quebec City, Quebec, Canada, AAAI Press, AAAI’14, pp 1551–1557 (2014)

  • McAuley, J., Leskovec, J.: Hidden factors and hidden topics: Understanding rating dimensions with review text. In: Proceedings of the 7th ACM International Conference on Recommender Systems, Hong Kong, China, ACM, RecSys’13, pp 165–172 (2013)

  • McSherry, D.: Similarity and compromise. In: Ashley, K.D., Bridge, D.G. (eds.) Proceedings of the 5th International Conference on Case-Based Reasoning, Trondheim, Norway, Springer, ICCBR’03, pp 291–305 (2003)

  • Miao, Q., Li, Q., Zeng, D.: Mining fine grained opinions by using probabilistic models and domain knowledge. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01, Toronto, Canada, IEEE Computer Society, WI-IAT’10, pp 358–365 (2010)

  • Moghaddam, S., Ester, M.: Opinion digger: An unsupervised opinion miner from unstructured product reviews. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, Canada, ACM, CIKM’10, pp 1825–1828 (2010)

  • Moshfeghi, Y., Piwowarski, B., Jose, J.M.: Handling data sparsity in collaborative filtering using emotion and semantic based features. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, ACM, SIGIR’11, pp 625–634 (2011)

  • Musat, C.C., Liang, Y., Faltings, B.: Recommendation using textual opinions. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, AAAI Press, IJCAI’13, pp 2684–2690 (2013)

  • Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  • Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. Rep. 1999–66, Stanford University, California, USA (1999)

  • Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  • Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10, Philadephia, Pennsylvania, USA, Association for Computational Linguistics, EMNLP’02, pp 79–86 (2002)

  • Payne, J.W., Bettman, J.R., Johnson, E.J.: The Adaptive Decision Maker. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  • Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 325–341. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Pero, Š., Horváth, T.: Opinion-driven matrix factorization for rating prediction. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) Proceedings of the 21st International Conference on User Modeling, Adaptation, and Personalization, Rome, Italy, Springer, UMAP’13, pp 1–13 (2013)

  • Poirier D, Fessant F, Tellier I.: Reducing the cold-start problem in content recommendation through opinion classification. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01, Toronto, Canada, IEEE Computer Society, WI-IAT’10, pp 204–207 (2010a)

  • Poirier, D., Tellier, I., Fessant, F., Schluth, J.: Towards text-based recommendations. In: Proceeding of the 9th International Conference on Adaptivity, Personalization and Fusion of Heterogeneous Information, Paris, France, RIAO’10, pp 136–137 (2010b)

  • Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, Canada, Association for Computational Linguistics, HLT’05, pp 339–346 (2005)

  • Poriya, A., Bhagat, T., Patel, N., Sharma, R.: Non-personalized recommender systems and user-based collaborative recommender systems. Int. J. Appl. Inf. Syst. 6(9), 22–27 (2014)

    Google Scholar 

  • Pu, P., Chen, L.: Integrating tradeoff support in product search tools for e-commerce sites. In: Proceedings of the 6th ACM Conference on Electronic Commerce, Vancouver, Canada, ACM, EC’05, pp 269–278 (2005)

  • Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the 5th ACM Conference on Recommender Systems, Chicago, Illinois, USA, ACM, RecSys’11, pp 157–164 (2011)

  • Qi, L., Chen, L.: A linear-chain CRF-based learning approach for web opinion mining. In: Chen, L., Triantafillou, P., Suel, T. (eds.) Proceedings of the 11th International Conference on Web Information Systems Engineering, Hong Kong, China, Springer-Verlag, WISE’10, pp 128–141 (2010)

  • Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

    Article  Google Scholar 

  • Raghavan, S., Gunasekar, S., Ghosh, J.: Review quality aware collaborative filtering. In: Proceedings of the 6th ACM Conference on Recommender systems, Dublin, Ireland, ACM, RecSys’12, pp 123–130 (2012)

  • Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, Association for Computational Linguistics, EMNLP’09, pp 248–256 (2009)

  • Ratnaparkhi, A.: Maximum entropy models for natural language ambiguity resolution. PhD thesis, University of Pennsylvania, Philadelphia, PA, USA (1998)

  • Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proceedings of the 22nd Annual Conference on Advances in Neural Information Processing Systems, Vancouver, Canada, NIPS’08, vol 20, pp 1257–1264 (2008)

  • Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)

    Article  Google Scholar 

  • Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, ACM, WWW’01, pp 285–295

  • Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Min. Knowl. Dis. 5(1–2), 115–153 (2001)

    Article  MATH  Google Scholar 

  • Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 291–324. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Seroussi, Y., Bohnert, F., Zukerman, I.: Personalised rating prediction for new users using latent factor models. In: Proceedings of the 22nd ACM Conference on Hypertext and Hypermedia, Eindhoven, The Netherlands, ACM, HT’11, pp 47–56 (2011)

  • Shaikh, M., Prendinger, H., Ishizuka, M.: A linguistic interpretation of the OCC emotion model for affect sensing from text. In: Tao, J., Tan, T. (eds.) Affective Information Processing, pp. 45–73. Springer, London (2009)

    Chapter  Google Scholar 

  • Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, US (2011)

    Chapter  Google Scholar 

  • Slonim N (2002) The information bottleneck: Theory and applications. PhD thesis, Hebrew University of Jerusalem, Jerusalem, Israel

  • Smyth, B.: Case-based recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 342–376. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Smyth, B., Cotter, P.: A personalised TV listings service for the digital TV age. Knowl. Based Syst. 13(2), 53–59 (2000)

    Article  Google Scholar 

  • Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D., Watson, I. (eds.) Proceedings of the 4th International Conference on Case-Based Reasoning: Case-Based Reasoning Research and Development, Vancouver, Canada, Springer-Verlag, ICCBR’01, pp 347–361 (2001)

  • Snyder, B., Barzilay, R.: Multiple aspect ranking using the good grief algorithm. In: Proceedings of the Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Rochester, NY, USA, HLT-NAACL’07, pp 300–307 (2007)

  • Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Advances in Artificial Intelligence 2009(4), (2009)

  • Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. ACM SIGKDD Explor. Newslett. 9(2), 80–83 (2007)

    Article  Google Scholar 

  • Tang, T.Y., McCalla, G.: The pedagogical value of papers: A collaborative-filtering based paper recommender. Journal of Digital Information 10(2), (2009)

  • Tintarev, N., Masthoff, J.: Designing and evaluating explanations for recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 479–510. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In: Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, Allerton, IL, USA, pp 368–377 (1999)

  • Tkalcic, M., Burnik, U., Odié, A., Kosir, A., Tasic, J.: Emotion-aware recommender systems - a framework and a case study. In: Markovski, S., Gusev, M. (eds.) ICT Innovations 2012, Advances in Intelligent Systems and Computing, vol. 207, pp. 141–150. Springer, Berlin (2013)

    Chapter  Google Scholar 

  • Ungar, L., Foster, D., Andre, E., Wars, S., Wars, F.S., Wars, D.S., Whispers, J.H.: Clustering methods for collaborative filtering. In: Proceedings of the AAAI Workshop on Recommendation Systems, Madison, Wisconsin, USA, AAAI Press, pp 114–129 (1998)

  • Wang, F., Pan, W., Chen, L.: Recommendation for new users with partial preferences by integrating product reviews with static specifications. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) Proceedings of the 21st International Conference on User Modeling, Adaptation, and Personalization, Rome, Italy, Springer, UMAP’13, pp 281–288 (2013)

  • Wang, Y., Liu, Y., Yu, X.: Collaborative filtering with aspect-based opinion mining: A tensor factorization approach. In: Proceedings of the IEEE International Conference on Data Mining, Brussels, Belgium, IEEE Computer Society, ICDM’12, pp 1152–1157 (2012)

  • Wedel, M., Kamakura, W.A.: Market Segmentation: Conceptual and Methodological Foundations, 2nd edn. Kluwer Academic Publishers, Boston (2000)

    Book  Google Scholar 

  • Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.: Text Mining: Predictive Methods for Analyzing Unstructured Information. Springer, New York (2005)

    Book  Google Scholar 

  • Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, Canada, Association for Computational Linguistics, HLT’05, pp 347–354 (2005)

  • Wu, W., Zhang, B., Ostendorf, M.: Automatic generation of personalized annotation tags for twitter users. In: Proceedings of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, California, USA, Association for Computational Linguistics, HLT’10, pp 689–692 (2010)

  • Yang, X., Steck, H., Guo, Y., Liu, Y.: On top-k recommendation using social networks. In: Proceedings of the 6th ACM International Conference on Recommender Systems, Dublin, Ireland, ACM, RecSys’12, pp 67–74 (2012)

  • Yates, A., Joseph, J., Popescu, A.M., Cohn, A.D., Sillick, N.: Shopsmart: Product recommendations through technical specifications and user reviews. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, California, USA, ACM, CIKM’08, pp 1501–1502 (2008)

  • Yu, K., Zhu, S., Lafferty, J., Gong, Y.: Fast nonparametric matrix factorization for large-scale collaborative filtering. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, Massachusetts, USA, ACM, SIGIR’09, pp 211–218 (2009)

  • Zhang, K., Narayanan, R., Choudhary, A.: Voice of the customers: Mining online customer reviews for product feature-based ranking. In: Proceedings of the 3rd Workshop on Online Social Networks, Boston, MA, USA, USENIX Association, WOSN’10, pp 11–11 (2010)

  • Zhang, W., Ding, G., Chen, L., Li, C., Zhang, C.: Generating virtual ratings from chinese reviews to augment online recommendations. ACM Trans. Intell. Syst. Technol. 4(1), 9 (2013)

    Article  MathSciNet  Google Scholar 

  • Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., Fu, R.: Improved recommendation based on collaborative tagging behaviors. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, Gran Canaria, Canary Islands, Spain, ACM, IUI’08, pp 413–416 (2008)

  • Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan, ACM, WWW’05, pp 22–32 (2005)

  • Zigoris, P., Zhang, Y.: Bayesian adaptive user profiling with explicit & implicit feedback. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, ACM, CIKM’06, pp 397–404 (2006)

Download references

Acknowledgments

We thank Hong Kong RGC for sponsoring the reported work (under project ECS/HKBU211912). We also thank reviewers for their suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, G. & Wang, F. Recommender systems based on user reviews: the state of the art. User Model User-Adap Inter 25, 99–154 (2015). https://doi.org/10.1007/s11257-015-9155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11257-015-9155-5

Keywords