Vlaams Instituut voor de Zee. VLIZ. Informatie over marien en kustgebonden onderzoek &amp... more Vlaams Instituut voor de Zee. VLIZ. Informatie over marien en kustgebonden onderzoek & beleid in Vlaanderen.
Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) respo... more Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) responses and latitude-size (L-S) clines. Yet, the degree to which these co-vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison of these gradients to date, and find that their direction and magnitude co-vary among 12 arthropod orders (r(2) = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T-S and L-S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial arthropods, size increases on average in univoltine species, consistent with prediction...
Proceedings of the Royal Society B: Biological Sciences, 2013
The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understa... more The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates.
Abstract In order to quantify the trophic impact of gelatinous predators, digestion time estimate... more Abstract In order to quantify the trophic impact of gelatinous predators, digestion time estimates are commonly applied to counts of prey in the guts. Three primary approaches are used, the Manual-feeding, Natural-feeding and Steady-state methods; these differ in methodology and their underlying assumptions. The criteria used to define the end-point of digestion, and the resolution at which digestion progress is observed, also vary across studies. To understand the impact of such differences, we estimate digestion times of the ...
Vlaams Instituut voor de Zee. VLIZ. Informatie over marien en kustgebonden onderzoek &amp... more Vlaams Instituut voor de Zee. VLIZ. Informatie over marien en kustgebonden onderzoek & beleid in Vlaanderen.
Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) respo... more Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) responses and latitude-size (L-S) clines. Yet, the degree to which these co-vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison of these gradients to date, and find that their direction and magnitude co-vary among 12 arthropod orders (r(2) = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T-S and L-S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial arthropods, size increases on average in univoltine species, consistent with prediction...
Proceedings of the Royal Society B: Biological Sciences, 2013
The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understa... more The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates.
Abstract In order to quantify the trophic impact of gelatinous predators, digestion time estimate... more Abstract In order to quantify the trophic impact of gelatinous predators, digestion time estimates are commonly applied to counts of prey in the guts. Three primary approaches are used, the Manual-feeding, Natural-feeding and Steady-state methods; these differ in methodology and their underlying assumptions. The criteria used to define the end-point of digestion, and the resolution at which digestion progress is observed, also vary across studies. To understand the impact of such differences, we estimate digestion times of the ...
Uploads
Papers by Andrew Hirst