Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It dis... more Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable intravenous median lethal dose (LD50) (0.56–0.63 μg/g) and cause neurotoxic envenomation in mice. LCMS/MS identified six waglerin forms as the predominant lethal principles, comprising 38.2% of total venom proteins. Fourteen other toxin-protein families identified include phospholipase A2, serine proteinase, snaclec and metalloproteinase. In mice, HPLC fractions containing these proteins showed insignificant contribution to the overall venom lethality. Besides, the unique elution pattern of approximately 34.5% of non-lethal, low molecular mass proteins (3–5 kDa) on HPLC could be potential biomarker for this primitive crotalid species. Together, the study unveiled the venom proteome of T. wagleri that is atypical among many pit vipers as it comprises abundant neurotoxic peptides (waglerins) but little hemotoxic proteinases. The findings also revealed that the venom is relatively well conserved intraspecifically despite the drastic morphological differences between sexes.
Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, i... more Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, its effectiveness has not been rigorously evaluated. This study aimed to assess the protein composition and neutralization efficacy of SABU. SDS polyacrylamide gel electrophoresis, size-exclusion liquid chromatography and shotgun proteomics revealed that SABU consists of F(ab') 2 but a significant amount of dimers, protein aggregates and contaminant albumins. SABU moderately neutralized Calloselasma rhodostoma venom (potency of 12.7 mg venom neutralized per ml antivenom, or 121.8 mg venom per g antivenom protein) and Bungarus fasciatus venom (0.9 mg/ml; 8.5 mg/g) but it was weak against the venoms of Naja sputatrix (0.3 mg/ml; 2.9 mg/g), Naja sumatrana (0.2 mg/ml; 1.8 mg/g) and Bungarus candidus (0.1 mg/ml; 1.0 mg/g). In comparison, NPAV, the Thai Neuro Polyvalent Antivenom, outperformed SABU with greater potencies against the venoms of N. sputatrix (0.6 mg/ml; 8.3 mg/g), N. sumatrana (0.5 mg/ml; 7.1 mg/g) and B. candidus (1.7 mg/ml; 23.2 mg/g). The inferior efficacy of SABU implies that a large antivenom dose is required clinically for effective treatment. Besides, the antivenom contains numerous impurities e.g., albumins that greatly increase the risk of hypersensitivity. Together, the findings indicate that the production of SABU warrants further improvement. Indonesia is a vast archipelago extending more than 5000 km from east to west in the equatorial region. Its rich herpetofauna includes more than 10 venomous snake species that distribute in two major ecozones divided by the Wallace's line. On the eastern side of the Wallace's line on the Sahul Shelf, there are the Australian elapid fauna, while snakes inhabiting islands west of the Wallace's line on the Sunda Shelf are mostly common or similar species found in the Malay Archipelago. Java and Sumatra are two huge, densely populated islands on the Sunda Shelf, and they are also natural habitat to many Indonesian snakes. In these islands, the spitting cobras (Naja sputatrix in Java and Lesser Sunda; Naja sumatrana in Sumatra and Kalimantan), the Malayan krait (Bungarus candidus) (Sumatra and Java) and the Malayan pit viper (Calloselasma rhodostoma in Java) are listed under WHO Category 1 of medical importance 1. Other species of medical importance include the Russell's viper (Daboia siamensis) and green pit vipers of Trimeresurus complex, the geographical distributions of which are relatively limited in the country. Although snakebite is likely affecting the Indonesian population at a large scale 1 , unfortunately, comprehensive epidemiological study of snakebite in this country remains extremely scarce 2. Snakebite envenomation has been aptly described as a disease of poverty that affects heavily the poor or rural population in the developing tropical countries 3,4. Prior to the year 2015, it was obscurely listed under " Other Categories " of the Neglected Tropical Diseases by the WHO, lacking systematic attention and official global support program. In 2015, the world saw the de-listing of this critical health problem from the mentioned list of WHO Neglected Tropical Diseases. In fact, the persistent underestimation of snakebite morbidity and mortality has made it the most neglected condition among many other diseases in the tropics 5 , and toxinology experts have called on WHO and governments to re-establish snakebite as a neglected tropical disease 6. Regional toxinologists are also taking up proactive approaches to tackle the various challenges associated with snakebite envenomation.
Snakebite envenomation is a serious medical problem in many tropical developing countries and was... more Snakebite envenomation is a serious medical problem in many tropical developing countries and was considered by WHO as a neglected tropical disease. Antivenom (AV), the rational and most effective treatment modality, is either unaffordable and/or unavailable in many affected countries. Moreover, each AV is specific to only one (monospecific) or a few (poly-specific) snake venoms. This demands that each country to prepare AV against its local snake venoms, which is often not feasible. Preparation of a 'pan-specific' AV against many snakes over a wide geographical area in some countries/regions has not been possible. If a 'pan-specific' AV effective against a variety of snakes from many countries could be prepared, it could be produced economically in large volume for use in many countries and save many lives. The aim of this study was to produce a pan-specific antiserum effective against major medically important elapids in Asia. The strategy was to use toxin fractions (TFs) of the venoms in place of crude venoms in order to reduce the number of antigens the horses were exposed to. This enabled inclusion of a greater variety of elapid venoms in the immunogen mix, thus exposing the horse immune system to a diverse repertoire of toxin epitopes, and gave rise to antiserum with wide para-specificity against elapid venoms. Twelve venom samples from six medically important elapid snakes (4 Naja spp. and 2 Bungarus spp.) were collected from 12 regions/countries in Asia. Nine of these 12 venoms were ultra-filtered to remove high molecular weight, non-toxic and highly immunogenic proteins. The remaining 3 venoms were not ultra-filtered due to limited amounts available. The 9 toxin fractions (TFs) together with the 3 crude venoms were emulsified in complete Freund's adjuvant and used to immunize 3 horses using a low dose, low volume, multisite immunization protocol. The horse antisera were assayed by ELISA and by in vivo lethality neutralization in mice. The findings were: a) The 9 TFs were shown to contain all of the venom toxins but were devoid of high MW proteins. When these TFs, together with the 3 crude venoms, were used as the immunogen,satisfactory ELISA antibody titers against homologous/heterologous venoms were obtained. b) The horse antiserum immunologically reacted with and neutralized the lethal effects of both the homologous and the 16 heterologous Asian/African elapid venoms tested. Thus, the use of TFs in place of crude venoms and the inclusion of a variety of elapid venoms in the immunogen mix resulted in antiserum with wide para-specificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries. Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.
The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian water... more The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian waters was investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and 4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice with an intravenous median lethal dose of b0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms (Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor to be overcome for improving the antivenom cross-neutralization efficacy.
Antivenom neutralization against cobra venoms is generally low in potency, presumably due to poor... more Antivenom neutralization against cobra venoms is generally low in potency, presumably due to poor toxin-specific immunoreactivity. This study aimed to investigate the effectiveness of two elapid antivenoms to neutralize the principal toxins purified from the venoms of the Thai monocled cobra (Naja kaouthia, Nk-T) and the Malaysian beaked sea snake (Hydrophis schistosus, Hs-M). In mice, N. kaouthia Monovalent Antivenom (NKMAV) neutralization against Nk-T long neurotoxin (LNTX) and cytotoxin was moderate (potency of 2.89–6.44 mg toxin/g antivenom protein) but poor against the short neurotoxin (SNTX) (1.33 mg/g). Its cross-neutralization against Hs-M LNTX of Hs-M is compatible (0.18 mg/g) but much weaker against Hs-M SNTX (0.22 mg/g). Using CSL (Seqirus Limited) Sea Snake Antivenom (SSAV), we observed consistently weak neutralization of antivenom against SNTX of both species, suggesting that this is the limiting factor on the potency of antivenom neutralization against venoms containing SNTX. Nevertheless, SSAV outperformed NKMAV in neutralizing SNTXs of both species (0.61–2.49 mg/g). The superior efficacy of SSAV against SNTX is probably partly attributable to the high abundance of SNTX in sea snake venom used as immunogen in SSAV production. The findings indicate that improving the potency of cobra antivenom may be possible with a proper immunogen formulation that seeks to overcome the limitation on SNTX immunoreactivity.
Background: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of As... more Background: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Results: Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A 2 (PLA 2 s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA 2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5'-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. Conclusion: This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom.
The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their veno... more The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t 90 , time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beak... more Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom < Thai monocled cobra monovalent antivenom < Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV OPEN ACCESS Toxins 2015, 7 573 and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays.
Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It dis... more Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable intravenous median lethal dose (LD50) (0.56–0.63 μg/g) and cause neurotoxic envenomation in mice. LCMS/MS identified six waglerin forms as the predominant lethal principles, comprising 38.2% of total venom proteins. Fourteen other toxin-protein families identified include phospholipase A2, serine proteinase, snaclec and metalloproteinase. In mice, HPLC fractions containing these proteins showed insignificant contribution to the overall venom lethality. Besides, the unique elution pattern of approximately 34.5% of non-lethal, low molecular mass proteins (3–5 kDa) on HPLC could be potential biomarker for this primitive crotalid species. Together, the study unveiled the venom proteome of T. wagleri that is atypical among many pit vipers as it comprises abundant neurotoxic peptides (waglerins) but little hemotoxic proteinases. The findings also revealed that the venom is relatively well conserved intraspecifically despite the drastic morphological differences between sexes.
Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, i... more Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, its effectiveness has not been rigorously evaluated. This study aimed to assess the protein composition and neutralization efficacy of SABU. SDS polyacrylamide gel electrophoresis, size-exclusion liquid chromatography and shotgun proteomics revealed that SABU consists of F(ab') 2 but a significant amount of dimers, protein aggregates and contaminant albumins. SABU moderately neutralized Calloselasma rhodostoma venom (potency of 12.7 mg venom neutralized per ml antivenom, or 121.8 mg venom per g antivenom protein) and Bungarus fasciatus venom (0.9 mg/ml; 8.5 mg/g) but it was weak against the venoms of Naja sputatrix (0.3 mg/ml; 2.9 mg/g), Naja sumatrana (0.2 mg/ml; 1.8 mg/g) and Bungarus candidus (0.1 mg/ml; 1.0 mg/g). In comparison, NPAV, the Thai Neuro Polyvalent Antivenom, outperformed SABU with greater potencies against the venoms of N. sputatrix (0.6 mg/ml; 8.3 mg/g), N. sumatrana (0.5 mg/ml; 7.1 mg/g) and B. candidus (1.7 mg/ml; 23.2 mg/g). The inferior efficacy of SABU implies that a large antivenom dose is required clinically for effective treatment. Besides, the antivenom contains numerous impurities e.g., albumins that greatly increase the risk of hypersensitivity. Together, the findings indicate that the production of SABU warrants further improvement. Indonesia is a vast archipelago extending more than 5000 km from east to west in the equatorial region. Its rich herpetofauna includes more than 10 venomous snake species that distribute in two major ecozones divided by the Wallace's line. On the eastern side of the Wallace's line on the Sahul Shelf, there are the Australian elapid fauna, while snakes inhabiting islands west of the Wallace's line on the Sunda Shelf are mostly common or similar species found in the Malay Archipelago. Java and Sumatra are two huge, densely populated islands on the Sunda Shelf, and they are also natural habitat to many Indonesian snakes. In these islands, the spitting cobras (Naja sputatrix in Java and Lesser Sunda; Naja sumatrana in Sumatra and Kalimantan), the Malayan krait (Bungarus candidus) (Sumatra and Java) and the Malayan pit viper (Calloselasma rhodostoma in Java) are listed under WHO Category 1 of medical importance 1. Other species of medical importance include the Russell's viper (Daboia siamensis) and green pit vipers of Trimeresurus complex, the geographical distributions of which are relatively limited in the country. Although snakebite is likely affecting the Indonesian population at a large scale 1 , unfortunately, comprehensive epidemiological study of snakebite in this country remains extremely scarce 2. Snakebite envenomation has been aptly described as a disease of poverty that affects heavily the poor or rural population in the developing tropical countries 3,4. Prior to the year 2015, it was obscurely listed under " Other Categories " of the Neglected Tropical Diseases by the WHO, lacking systematic attention and official global support program. In 2015, the world saw the de-listing of this critical health problem from the mentioned list of WHO Neglected Tropical Diseases. In fact, the persistent underestimation of snakebite morbidity and mortality has made it the most neglected condition among many other diseases in the tropics 5 , and toxinology experts have called on WHO and governments to re-establish snakebite as a neglected tropical disease 6. Regional toxinologists are also taking up proactive approaches to tackle the various challenges associated with snakebite envenomation.
Snakebite envenomation is a serious medical problem in many tropical developing countries and was... more Snakebite envenomation is a serious medical problem in many tropical developing countries and was considered by WHO as a neglected tropical disease. Antivenom (AV), the rational and most effective treatment modality, is either unaffordable and/or unavailable in many affected countries. Moreover, each AV is specific to only one (monospecific) or a few (poly-specific) snake venoms. This demands that each country to prepare AV against its local snake venoms, which is often not feasible. Preparation of a 'pan-specific' AV against many snakes over a wide geographical area in some countries/regions has not been possible. If a 'pan-specific' AV effective against a variety of snakes from many countries could be prepared, it could be produced economically in large volume for use in many countries and save many lives. The aim of this study was to produce a pan-specific antiserum effective against major medically important elapids in Asia. The strategy was to use toxin fractions (TFs) of the venoms in place of crude venoms in order to reduce the number of antigens the horses were exposed to. This enabled inclusion of a greater variety of elapid venoms in the immunogen mix, thus exposing the horse immune system to a diverse repertoire of toxin epitopes, and gave rise to antiserum with wide para-specificity against elapid venoms. Twelve venom samples from six medically important elapid snakes (4 Naja spp. and 2 Bungarus spp.) were collected from 12 regions/countries in Asia. Nine of these 12 venoms were ultra-filtered to remove high molecular weight, non-toxic and highly immunogenic proteins. The remaining 3 venoms were not ultra-filtered due to limited amounts available. The 9 toxin fractions (TFs) together with the 3 crude venoms were emulsified in complete Freund's adjuvant and used to immunize 3 horses using a low dose, low volume, multisite immunization protocol. The horse antisera were assayed by ELISA and by in vivo lethality neutralization in mice. The findings were: a) The 9 TFs were shown to contain all of the venom toxins but were devoid of high MW proteins. When these TFs, together with the 3 crude venoms, were used as the immunogen,satisfactory ELISA antibody titers against homologous/heterologous venoms were obtained. b) The horse antiserum immunologically reacted with and neutralized the lethal effects of both the homologous and the 16 heterologous Asian/African elapid venoms tested. Thus, the use of TFs in place of crude venoms and the inclusion of a variety of elapid venoms in the immunogen mix resulted in antiserum with wide para-specificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries. Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.
The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian water... more The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian waters was investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and 4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice with an intravenous median lethal dose of b0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms (Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor to be overcome for improving the antivenom cross-neutralization efficacy.
Antivenom neutralization against cobra venoms is generally low in potency, presumably due to poor... more Antivenom neutralization against cobra venoms is generally low in potency, presumably due to poor toxin-specific immunoreactivity. This study aimed to investigate the effectiveness of two elapid antivenoms to neutralize the principal toxins purified from the venoms of the Thai monocled cobra (Naja kaouthia, Nk-T) and the Malaysian beaked sea snake (Hydrophis schistosus, Hs-M). In mice, N. kaouthia Monovalent Antivenom (NKMAV) neutralization against Nk-T long neurotoxin (LNTX) and cytotoxin was moderate (potency of 2.89–6.44 mg toxin/g antivenom protein) but poor against the short neurotoxin (SNTX) (1.33 mg/g). Its cross-neutralization against Hs-M LNTX of Hs-M is compatible (0.18 mg/g) but much weaker against Hs-M SNTX (0.22 mg/g). Using CSL (Seqirus Limited) Sea Snake Antivenom (SSAV), we observed consistently weak neutralization of antivenom against SNTX of both species, suggesting that this is the limiting factor on the potency of antivenom neutralization against venoms containing SNTX. Nevertheless, SSAV outperformed NKMAV in neutralizing SNTXs of both species (0.61–2.49 mg/g). The superior efficacy of SSAV against SNTX is probably partly attributable to the high abundance of SNTX in sea snake venom used as immunogen in SSAV production. The findings indicate that improving the potency of cobra antivenom may be possible with a proper immunogen formulation that seeks to overcome the limitation on SNTX immunoreactivity.
Background: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of As... more Background: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Results: Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A 2 (PLA 2 s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA 2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5'-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. Conclusion: This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom.
The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their veno... more The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t 90 , time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beak... more Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom < Thai monocled cobra monovalent antivenom < Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV OPEN ACCESS Toxins 2015, 7 573 and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays.
Uploads
Papers by Choo Hock Tan
mix resulted in antiserum with wide para-specificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries.
Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.
investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass
spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong
to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP),
snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and
4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long
neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins
include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long
neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice
with an intravenous median lethal dose of b0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms
(Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long
neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor
to be overcome for improving the antivenom cross-neutralization efficacy.
mix resulted in antiserum with wide para-specificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries.
Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.
investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass
spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong
to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP),
snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and
4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long
neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins
include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long
neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice
with an intravenous median lethal dose of b0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms
(Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long
neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor
to be overcome for improving the antivenom cross-neutralization efficacy.