Smart card based authentication and key agreement schemes for telecare medicine information syste... more Smart card based authentication and key agreement schemes for telecare medicine information systems (TMIS) enable doctors, nurses, patients and health visitors to use smart cards for secure login to medical information systems. In recent years, several authentication and key agreement schemes have been proposed to present secure and efficient solution for TMIS. Most of the existing authentication schemes for TMIS have either higher computation overhead or are vulnerable to attacks. To reduce the computational overhead and enhance the security, Lee recently proposed an authentication and key agreement scheme using chaotic maps for TMIS. Xu et al. also proposed a password based authentication and key agreement scheme for TMIS using elliptic curve cryptography. Both the schemes provide better efficiency from the conventional public key cryptography based schemes. These schemes are important as they present an efficient solution for TMIS. We analyze the security of both Lee's scheme and Xu et al.'s schemes. Unfortunately, we identify that both the schemes are vulnerable to denial of service attack. To understand the security failures of these cryptographic schemes which are the key of patching existing schemes and designing future schemes, we demonstrate the security loopholes of Lee's scheme and Xu et al.'s scheme in this paper.
2012 World Congress on Information and Communication Technologies, 2012
ABSTRACT Digital rights management (DRM) system is widely used to restrict the illegal content co... more ABSTRACT Digital rights management (DRM) system is widely used to restrict the illegal content consumption. However, to achieve security and accountability, the system loses privacy. In addition, multiparty multilevel (MPML) DRM system maintains single private key generator (PKG), which completely eliminates online lookup in a large network. In this paper, we present a hierarchical identity based encryption (HIBE) scheme for MPML DRM. In the proposed scheme, we use 2-level HIBE in which a trusted party act as a root PKG and each domain PKG act as a first level authorities, which are responsible to generate the private keys for the entities of their domains. Further, we address a commutative encryption based content key acquisition scheme to achieve privacy.
Telecare medicine information systems (TMIS) present the platform to deliver clinical service doo... more Telecare medicine information systems (TMIS) present the platform to deliver clinical service door to door. The technological advances in mobile computing are enhancing the quality of healthcare and a user can access these services using its mobile device. However, user and Telecare system communicate via public channels in these online services which increase the security risk. Therefore, it is required to ensure that only authorized user is accessing the system and user is interacting with the correct system. The mutual authentication provides the way to achieve this. Although existing schemes are either vulnerable to attacks or they have higher computational cost while an scalable authentication scheme for mobile devices should be secure and efficient. Recently, Awasthi and Srivastava presented a biometric based authentication scheme for TMIS with nonce. Their scheme only requires the computation of the hash and XOR functions.pagebreak Thus, this scheme fits for TMIS. However, we observe that Awasthi and Srivastava's scheme does not achieve efficient password change phase. Moreover, their scheme does not resist off-line password guessing attack. Further, we propose an improvement of Awasthi and Srivastava's scheme with the aim to remove the drawbacks of their scheme.
We present a multi-level multi-distributor based DRM architecture that facilitates client mobilit... more We present a multi-level multi-distributor based DRM architecture that facilitates client mobility and propose key management mechanism for this system using Identity-Based Encryption (IBE) and Attribute-Based Encryption (ABE). The encrypted digital content sent ...
Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the... more Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the safety, security and integrity of transmitted data over the public channel. In 2013, Tan presented a biometric based remote user authentication scheme and claimed that his scheme is secure. Recently, Yan et al. demonstrated some drawbacks in Tan's scheme and proposed an improved scheme to erase the drawbacks of Tan's scheme. We analyze Yan et al.'s scheme and identify that their scheme is vulnerable to off-line password guessing attack, and does not protect anonymity. Moreover, in their scheme, login and password change phases are inefficient to identify the correctness of input where inefficiency in password change phase can cause denial of service attack. Further, we design an improved scheme for TMIS with the aim to eliminate the drawbacks of Yan et al.'s scheme.
Telecare medical information systems (TMIS) enable healthcare delivery services. However, access ... more Telecare medical information systems (TMIS) enable healthcare delivery services. However, access of these services via public channel raises security and privacy issues. In recent years, several smart card based authentication schemes have been introduced to ensure secure and authorized communication between remote entities over the public channel for the (TMIS). We analyze the security of some of the recently proposed authentication schemes of Lin, Xie et al., Cao and Zhai, and Wu and Xu's for TMIS. Unfortunately, we identify that these schemes failed to satisfy desirable security attributes. In this article we briefly discuss four dynamic ID-based authentication schemes and demonstrate their failure to satisfy desirable security attributes. The study is aimed to demonstrate how inefficient password change phase can lead to denial of server scenario for an authorized user, and how an inefficient login phase causes the communication and computational overhead and decrease the pe...
Smart card based authentication and key agreement schemes for telecare medicine information syste... more Smart card based authentication and key agreement schemes for telecare medicine information systems (TMIS) enable doctors, nurses, patients and health visitors to use smart cards for secure login to medical information systems. In recent years, several authentication and key agreement schemes have been proposed to present secure and efficient solution for TMIS. Most of the existing authentication schemes for TMIS have either higher computation overhead or are vulnerable to attacks. To reduce the computational overhead and enhance the security, Lee recently proposed an authentication and key agreement scheme using chaotic maps for TMIS. Xu et al. also proposed a password based authentication and key agreement scheme for TMIS using elliptic curve cryptography. Both the schemes provide better efficiency from the conventional public key cryptography based schemes. These schemes are important as they present an efficient solution for TMIS. We analyze the security of both Lee's scheme and Xu et al.'s schemes. Unfortunately, we identify that both the schemes are vulnerable to denial of service attack. To understand the security failures of these cryptographic schemes which are the key of patching existing schemes and designing future schemes, we demonstrate the security loopholes of Lee's scheme and Xu et al.'s scheme in this paper.
2012 World Congress on Information and Communication Technologies, 2012
ABSTRACT Digital rights management (DRM) system is widely used to restrict the illegal content co... more ABSTRACT Digital rights management (DRM) system is widely used to restrict the illegal content consumption. However, to achieve security and accountability, the system loses privacy. In addition, multiparty multilevel (MPML) DRM system maintains single private key generator (PKG), which completely eliminates online lookup in a large network. In this paper, we present a hierarchical identity based encryption (HIBE) scheme for MPML DRM. In the proposed scheme, we use 2-level HIBE in which a trusted party act as a root PKG and each domain PKG act as a first level authorities, which are responsible to generate the private keys for the entities of their domains. Further, we address a commutative encryption based content key acquisition scheme to achieve privacy.
Telecare medicine information systems (TMIS) present the platform to deliver clinical service doo... more Telecare medicine information systems (TMIS) present the platform to deliver clinical service door to door. The technological advances in mobile computing are enhancing the quality of healthcare and a user can access these services using its mobile device. However, user and Telecare system communicate via public channels in these online services which increase the security risk. Therefore, it is required to ensure that only authorized user is accessing the system and user is interacting with the correct system. The mutual authentication provides the way to achieve this. Although existing schemes are either vulnerable to attacks or they have higher computational cost while an scalable authentication scheme for mobile devices should be secure and efficient. Recently, Awasthi and Srivastava presented a biometric based authentication scheme for TMIS with nonce. Their scheme only requires the computation of the hash and XOR functions.pagebreak Thus, this scheme fits for TMIS. However, we observe that Awasthi and Srivastava's scheme does not achieve efficient password change phase. Moreover, their scheme does not resist off-line password guessing attack. Further, we propose an improvement of Awasthi and Srivastava's scheme with the aim to remove the drawbacks of their scheme.
We present a multi-level multi-distributor based DRM architecture that facilitates client mobilit... more We present a multi-level multi-distributor based DRM architecture that facilitates client mobility and propose key management mechanism for this system using Identity-Based Encryption (IBE) and Attribute-Based Encryption (ABE). The encrypted digital content sent ...
Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the... more Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the safety, security and integrity of transmitted data over the public channel. In 2013, Tan presented a biometric based remote user authentication scheme and claimed that his scheme is secure. Recently, Yan et al. demonstrated some drawbacks in Tan's scheme and proposed an improved scheme to erase the drawbacks of Tan's scheme. We analyze Yan et al.'s scheme and identify that their scheme is vulnerable to off-line password guessing attack, and does not protect anonymity. Moreover, in their scheme, login and password change phases are inefficient to identify the correctness of input where inefficiency in password change phase can cause denial of service attack. Further, we design an improved scheme for TMIS with the aim to eliminate the drawbacks of Yan et al.'s scheme.
Telecare medical information systems (TMIS) enable healthcare delivery services. However, access ... more Telecare medical information systems (TMIS) enable healthcare delivery services. However, access of these services via public channel raises security and privacy issues. In recent years, several smart card based authentication schemes have been introduced to ensure secure and authorized communication between remote entities over the public channel for the (TMIS). We analyze the security of some of the recently proposed authentication schemes of Lin, Xie et al., Cao and Zhai, and Wu and Xu's for TMIS. Unfortunately, we identify that these schemes failed to satisfy desirable security attributes. In this article we briefly discuss four dynamic ID-based authentication schemes and demonstrate their failure to satisfy desirable security attributes. The study is aimed to demonstrate how inefficient password change phase can lead to denial of server scenario for an authorized user, and how an inefficient login phase causes the communication and computational overhead and decrease the pe...
Uploads
Papers by Dheerendra Mishra