Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    An-Chang Shi

    The formation of various bicontinuous phases from binary blends of linear AB diblock copolymers (DBCPs) is studied using the polymeric self-consistent field theory. The theoretical study predicts that the double-diamond and the... more
    The formation of various bicontinuous phases from binary blends of linear AB diblock copolymers (DBCPs) is studied using the polymeric self-consistent field theory. The theoretical study predicts that the double-diamond and the "plumber's nightmare" phases, which are metastable for neat diblock copolymers, could be stabilized in block copolymers with designed dispersity, namely, binary blends composed of a gyroid-forming DBCP and a homopolymer-like DBCP. The spatial distribution of different monomers reveals that these two types of DBCPs are segregated such that the homopolymer-like component is localized at the nodes to relieve the packing frustration. Simultaneously, the presence of a local segregation of the two DBCPs on the AB interface regulates the interfacial curvature. These two mechanisms could act in tandem for homopolymer-like diblock copolymers with proper compositions, resulting in larger stability regions for the novel bicontinuous phases.
    Phase behavior of diblock copolymer/homopolymer blends (AB/C) is investigated theoretically. The study focuses on a special case where all three binary pairs, A/B, B/C and C/A, are miscible. Despite the miscibility of the binary pairs, a... more
    Phase behavior of diblock copolymer/homopolymer blends (AB/C) is investigated theoretically. The study focuses on a special case where all three binary pairs, A/B, B/C and C/A, are miscible. Despite the miscibility of the binary pairs, a closed-loop immiscible region exists in the AB/C blends when the A/C and B/C pair interactions are sufficiently different. Inside the closed-loop, the system undergoes microphase separation, exhibiting different ordered structures. This phenomenon is enhanced when the homopolymer (C) interacts more strongly to one of the blocks (A or B).
    Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their... more
    Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such surface tension, bending moduli and line tension. Understanding how the molecular property of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.
    The phase behavior of polydisperse ABA triblock copolymers is studied using dissipative particle dynamics simulations, focusing on the emergence and property of bicontinuous structures. Bicontinuous structures are characterized by two... more
    The phase behavior of polydisperse ABA triblock copolymers is studied using dissipative particle dynamics simulations, focusing on the emergence and property of bicontinuous structures. Bicontinuous structures are characterized by two separate, intermeshed nanoscopic domains extending throughout the material. The connectivity of polymeric bicontinuous structures makes them highly desirable for many applications. For conventional monodisperse diblock and triblock copolymers, regular bicontinuous structures (i.e., gyroid and Fddd) can be formed over a narrow composition window of ~3%. We demonstrate that the composition window for the formation of bicontinuous structures can be regulated by designed polydispersity distributions of ABA triblock copolymers. In particular, introducing polydispersity in both A and B blocks can lead to a significant enhancement of the composition window of bicontinuous structures with both continuous A and B domains. The mechanism of the bicontinuous struc...
    We propose a general framework of computing interfacial structure. If an ordered phase is involved, the interfacial structure can be obtained by simply minimizing the free energy with compatible boundary conditions. The framework is... more
    We propose a general framework of computing interfacial structure. If an ordered phase is involved, the interfacial structure can be obtained by simply minimizing the free energy with compatible boundary conditions. The framework is applied to Landau- Brazovskii model and works efficiently.
    The relative stability of two-dimensional soft quasicrystals is examined using a recently developed projection method which provides a unified numerical framework to compute the free energy of periodic crystal and quasicrystals. Accurate... more
    The relative stability of two-dimensional soft quasicrystals is examined using a recently developed projection method which provides a unified numerical framework to compute the free energy of periodic crystal and quasicrystals. Accurate free energies of numerous ordered phases, including dodecagonal, decagonal and octagonal quasicrystals, are obtained for a simple model, i.e. the Lifshitz-Petrich free energy functional, of soft quasicrystals with two length-scales. The availability of the free energy allows us to construct phase diagrams of the system, demonstrating that, for the Lifshitz-Petrich model, the dodecagonal and decagonal quasicrystals can become stable phases, whereas the octagonal quasicrystal stays as a metastable phase.
    The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two... more
    The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.
    The elastic properties of a self-assembled bilayer membrane are studied using the self-consistent field theory, applied to a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents. Examining the... more
    The elastic properties of a self-assembled bilayer membrane are studied using the self-consistent field theory, applied to a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents. Examining the free energy of bilayer membranes with different geometries allows us to calculate their bending modulus, Gaussian modulus, two fourth-order membrane moduli, and the line tension. The dependence of these parameters on the microscopic characteristics of the amphiphilic chain, characterized by the volume fraction of the hydrophilic component, is systematically studied. The theoretical predictions are compared with the results from a simple monolayer model, which approximates a bilayer membrane by two monolayers. Finally the region of validity of the linear elasticity theory is analyzed by examining the higher-order contributions.
    The formation of various bicontinuous phases from binary blends of linear AB diblock copolymers (DBCPs) is studied using the polymeric self-consistent field theory. The theoretical study predicts that the double-diamond and the “plumber’s... more
    The formation of various bicontinuous phases from binary blends of linear AB diblock copolymers (DBCPs) is studied using the polymeric self-consistent field theory. The theoretical study predicts that the double-diamond and the “plumber’s nightmare” phases, which are metastable for neat diblock copolymers, could be stabilized in block copolymers with designed dispersity, namely, binary blends composed of a gyroid-forming DBCP and a homopolymerlike DBCP. The spatial distribution of different monomers reveals that these two types of DBCPs are segregated such that the homopolymer-like component is localized at the nodes to relieve the packing frustration. Simultaneously, the presence of a local segregation of the two DBCPs on the AB interface regulates the interfacial curvature. These two mechanisms could act in tandem for homopolymer-like diblock copolymers with proper compositions, resulting in larger stability regions for the novel bicontinuous phases.
    aSchool of Mathematical Sciences, Laboratory of Mathematics and Applied Mathematics, Peking University, Beijing 100871, China; bSchool of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China; cDepartment of... more
    aSchool of Mathematical Sciences, Laboratory of Mathematics and Applied Mathematics, Peking University, Beijing 100871, China; bSchool of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China; cDepartment of Physics and Astronomy, McMaster University, Hamilton, Canada L8S 4M1; dBeijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
    A phase field model with two phase fields, representing the concentration and the head–tail separation of amphiphilic molecules, respectively, has been constructed using an extension of the Ohta–Kawasaki model (Macromolecules, 1986, 19,... more
    A phase field model with two phase fields, representing the concentration and the head–tail separation of amphiphilic molecules, respectively, has been constructed using an extension of the Ohta–Kawasaki model (Macromolecules, 1986, 19, 2621–2632).
    Cooling disordered compositionally asymmetric diblock copolymers leads to the formation of nearly spherical particles, each containing hundreds of molecules, which crystallize upon cooling below the order-disorder transition temperature... more
    Cooling disordered compositionally asymmetric diblock copolymers leads to the formation of nearly spherical particles, each containing hundreds of molecules, which crystallize upon cooling below the order-disorder transition temperature (). Self-consistent field theory (SCFT) reveals that dispersity in the block degrees of polymerization stabilizes various Frank-Kasper phases, including the C14 and C15 Laves phases, which have been accessed experimentally in low-molar-mass poly(isoprene)--poly(lactide) (PI-PLA) diblock copolymers using thermal processing strategies. Heating and cooling a specimen containing 15% PLA above and below the from the body-centered cubic (BCC) or C14 states regenerates the same crystalline order established at lower temperatures. This memory effect is also demonstrated with a specimen containing 20% PLA, which recrystallizes to either C15 or hexagonally ordered cylinders (HEX) upon heating and cooling. The process-path-dependent formation of crystalline ord...
    Monolayers of linear and miktoarm star ABC triblock copolymers with equal A and C blocks were investigated using self-consistent field theory. Monolayers of ABC triblock copolymers were formed between two parallel surfaces that were... more
    Monolayers of linear and miktoarm star ABC triblock copolymers with equal A and C blocks were investigated using self-consistent field theory. Monolayers of ABC triblock copolymers were formed between two parallel surfaces that were attractive to the A and C blocks. The repulsive interaction parameter χN between the A and C blocks was chosen to be weaker than the A/B and B/C interactions, quantified by χN and χN, respectively, such that the B blocks were confined at the A/C interface, resulting in various B domains with different geometries and arrangements. It was observed that two variables, namely, the strength of the surface fields and the film thickness, were dominant factors controlling the self-assembly of the B blocks into various morphologies. For the linear triblock copolymers, the morphologies of the B domains included disks, stripes (parallel cylinders), and hexagonal networks (inverse disks). For the miktoarm star triblock copolymers, the competition between the tendency to align the junction points along a straight line and the constraint on their arrangement from the surface interactions led to richer ordered morphologies. As a result of the packing of the junction points of the ABC miktoarm star copolymers, a counterintuitive phase sequence from low-curvature phases to high-curvature phases with increasing length of B block was predicted. The study indicates that the self-assembly of monolayers of ABC triblock copolymers provides an interesting platform for engineering novel morphologies.
    We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and... more
    We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and orientation. The boundary conditions and basis functions are chosen to be commensurate with the bulk phases. We observe that the ordered nature of modulated structures stabilizes the interface, which enables us to obtain optimal interfacial structures by searching local minima of the free energy landscape. The framework is applied to the Landau-Brazovskii model to investigate interfaces between modulated phases with different relative positions and orientations. Several types of novel complex interfacial structures emerge from the calculations.
    The emergence of the complex Frank-Kasper phases from binary mixtures of AB diblock copolymers is studied using the self-consistent field theory. The relative stability of different ordered phases, including the Frank-Kasper σ and A15... more
    The emergence of the complex Frank-Kasper phases from binary mixtures of AB diblock copolymers is studied using the self-consistent field theory. The relative stability of different ordered phases, including the Frank-Kasper σ and A15 phases containing nonspherical minority domains with different sizes, is examined by a comparison of their free energy. The resulting phase diagrams reveal that the σ phase occupies a large region in the phase space of the system. The formation mechanism of the σ phase is elucidated by the distribution of the two diblock copolymers with different lengths and compositions. In particular, the segregation of the two types of copolymers, occurring among different domains and within each domain, provides a mechanism to regulate the size and shape of the minority domains, thus enhancing the stability of the Frank-Kasper phases. These findings provide insight into understanding the formation of the Frank-Kasper phases in soft matter systems and a simple route to obtain complex orde...
    We report a remarkable sensitivity of self-assembled structures of giant surfactants on their chemical compositions and molecular topology, which facilitate the engineering of various nanophase-separated structures with sub-10 nm feature... more
    We report a remarkable sensitivity of self-assembled structures of giant surfactants on their chemical compositions and molecular topology, which facilitate the engineering of various nanophase-separated structures with sub-10 nm feature sizes. Two classes of giant surfactants composed of various functionalized polyhedral oligomeric silsesquioxane (POSS) heads tethered with one or two polystyrene (PS) tails were efficiently prepared from common precursors of vinyl-substituted POSS–PS conjugates via one-step “thiol–ene” postpolymerization functionalization. With identical molecular weights of the PS tails, the resulting giant surfactants exhibited distinct highly ordered phases, as evidenced by small-angle X-ray scattering and transmission electron microscopy observations. Moreover, comparison between the topological isomers revealed that the self-assembled structures are also highly sensitive to molecular topology. Introduction of two PS tails with half-length not only shifted the boundaries between diffe...
    The phase behavior of B1AB2C tetrablock terpolymer melts is systematically studied using the self-consistent field theory, focusing on the emergence and stability of the complex Frank-Kasper σ-phase. Our study starts with an investigation... more
    The phase behavior of B1AB2C tetrablock terpolymer melts is systematically studied using the self-consistent field theory, focusing on the emergence and stability of the complex Frank-Kasper σ-phase. Our study starts with an investigation of the stability region of the σ phase for a generic model of B1AB2C terpolymers, in which the C-blocks form spherical domains immersed in the A/B matrix. Then, we examine the stability of the σ phase for a model system with a specific set of parameters mimicking poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) block copolymers which were examined in recent experiments. Our results reveal that the formation of the σ phase is mainly governed by two factors. The first factor is the conformational asymmetry between the A/B-blocks and the C-block, similar to that in conformationally asymmetric AB-type block copolymers. The second factor is the specific chain architecture of B1AB2C. The tetrablock architecture with a specific set of interactio...
    The conformation of homodendrimers and amphiphilic dendrimers in various solvents is studied using classical density functional theory (DFT), in which the excluded-volume effects are treated explicitly. For homodendrimers in an athermal... more
    The conformation of homodendrimers and amphiphilic dendrimers in various solvents is studied using classical density functional theory (DFT), in which the excluded-volume effects are treated explicitly. For homodendrimers in an athermal solvent, DFT results predict a remarkable fold-back behavior for the outer generation of segments, supporting the dense-core model. A coil-to-globule transition is observed for homodendrimers in a poor solvent. The size of the dendrimers, characterized by the radius of gyration, ⟨Rg⟩, is found to follow the scaling relationship, ⟨Rg⟩ ∼ N(ν), where N is the total number of segments of the dendrimers. For amphiphilic dendrimers, DFT results show that chemical modification in the outermost generation is an effective method to drive the ends toward the periphery of the dendrimers. In particular, a conformation with a hollow interior structure could be formed for amphiphilic dendrimers with longer end spacers in a selective solvent. The resulting unimolec...
    Aptamers are recently developed molecular biosensors made of single functionalized DNA molecules. They can bind a protein target specifically or a complementary DNA sequence. The binding kinetics can be studied based on the principle of... more
    Aptamers are recently developed molecular biosensors made of single functionalized DNA molecules. They can bind a protein target specifically or a complementary DNA sequence. The binding kinetics can be studied based on the principle of fluorescence quenching, which in turn provides an understanding of the binding mechanism and the conformational structure of DNA during the binding reaction. Despite many experimental
    We report a simulated annealing study of surface structures of the Y-shaped copolymers grafted onto a planar substrate in nonselective solvents. The influences of the lateral size of the grafting surface and the distribution manner of the... more
    We report a simulated annealing study of surface structures of the Y-shaped copolymers grafted onto a planar substrate in nonselective solvents. The influences of the lateral size of the grafting surface and the distribution manner of the grafting point on the order degree of the ripple structures are investigated. Under uniformly distribution conditions, it is found that the well-defined ripple structures can be formed when the lateral size less than a threshold which depends on the solvent quality and grafting density. However, introducing a density fluctuation into the uniformly distribution grafting points in different ways, the defects with different degrees are observed in the ripple structures. The influence of the density fluctuations on the ripple phase are studied quantitatively. Furthermore, the possibility of the formation of surface structures with long-range order induced by directed self-assembly is investigated. The findings provide guidelines for fabricating pattern...
    The phase behavior of double-hydrophilic AB diblock copolymers in concentrated aqueous solutions is investigated using a simulated annealing technique. Phase diagrams of the system are constructed as a function of the volume fraction and... more
    The phase behavior of double-hydrophilic AB diblock copolymers in concentrated aqueous solutions is investigated using a simulated annealing technique. Phase diagrams of the system are constructed as a function of the volume fraction and concentration of the copolymer (Φ) as well as the hydrophilicity difference between the two blocks. Rich phase transition sequences, especially reentrant phase transitions, such as lamellae → gyroid → hexagonally packed cylinders → gyroid → lamellae → disorder, are observed for a given copolymer with decreasing Φ. By analyzing the variations of the average contact numbers between the A or B monomers and solvents, and of the effective volume fractions, the mechanisms of the reentrant, the order–order, and the order–disorder transitions are elucidated. The difference in hydrophilicity or in volume fraction can be used to tune the degree of swelling of the two blocks, resulting in a nonmonotonic variation of the effective volume fraction of the A (or B)-rich domain with the ...
    The formation of ordered phases from block copolymers is driven by a delicate balance between the monomer-monomer interaction and chain configurational entropy. The configurational entropy can be regulated by designed chain architecture,... more
    The formation of ordered phases from block copolymers is driven by a delicate balance between the monomer-monomer interaction and chain configurational entropy. The configurational entropy can be regulated by designed chain architecture, resulting in a new entropy-driven mechanism to control the self-assembly of ordered phases from block copolymers. An effective routine to regulate the configurational entropy is to utilize multiarm architecture, in which the entropic contribution to the free energy could be qualitatively controlled by the fraction of bridging configurations. As an illustration of this mechanism, the phase behavior of two AB-type multiarm block copolymers, B_{0}-(B_{i}-A_{i})_{m} and (B_{1}-A_{i}-B_{2})_{m} where the minority A blocks form cylindrical or spherical domains, are examined using the self-consistent field theory (SCFT). The SCFT results demonstrate that the packing symmetry of the cylinders or spheres can be controlled by the length of the bridging B blocks. Several nonclassical ordered phases, including a novel square array cylinder with p4mm symmetry, are predicted to form from the AB-type multiarm block copolymers.
    Spontaneous formation of concentric lamellae was observed in self-assembling giant surfactants consisting of a fluorinated polyhedral oligomeric silsesquioxane (FPOSS) head and flexible polymer tail(s). Owing to the asymmetrical sizes of... more
    Spontaneous formation of concentric lamellae was observed in self-assembling giant surfactants consisting of a fluorinated polyhedral oligomeric silsesquioxane (FPOSS) head and flexible polymer tail(s). Owing to the asymmetrical sizes of the head and tail blocks and the rectangular molecular interface, the giant surfactants assumed a truncated-wedge-like molecular shape, which induced morphological curvature during self-assembly, thus resulting in the formation of curved and concentric lamellae. These curved/concentric lamellae were observed in FPOSS-based giant surfactants with different architectures and compositions. The spontaneous curvature formation not only promotes our fundamental understanding of assembly principles, but also provides a promising and efficient approach to the fabrication of a wide range of high-performance devices.
    The self-assembly behavior of specifically designed giant surfactants is systematically studied in thin films using grazing incidence X-ray scattering and transmission electron microscopy, focusing on the effects of molecular nanoparticle... more
    The self-assembly behavior of specifically designed giant surfactants is systematically studied in thin films using grazing incidence X-ray scattering and transmission electron microscopy, focusing on the effects of molecular nanoparticle (MNP) functionalities and molecular architectures on nanostructure formation. Two MNPs with different surface functionalities, i.e., hydrophilic carboxylic acid functionalized [60]fullerene (AC60) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as the head portions of the giant surfactants. By covalently tethering these functional MNPs onto the end point or junction point of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer, linear and star-like giant surfactants with different molecular architectures are constructed. With fixed length of the PEO block, changing the molecular weight of the PS block leads to the formation of various ordered phases and phase transitions. Due to the distinct affi...
    The relative stability of two-dimensional soft quasicrystals in systems with two length scales is examined using a recently developed projection method, which provides a unified numerical framework to compute the free energy of periodic... more
    The relative stability of two-dimensional soft quasicrystals in systems with two length scales is examined using a recently developed projection method, which provides a unified numerical framework to compute the free energy of periodic crystal and quasicrystals. Accurate free energies of numerous ordered phases, including dodecagonal, decagonal, and octagonal quasicrystals, are obtained for a simple model, i.e., the Lifshitz-Petrich free-energy functional, of soft quasicrystals with two length scales. The availability of the free energy allows us to construct phase diagrams of the system, demonstrating that, for the Lifshitz-Petrich model, the dodecagonal and decagonal quasicrystals can become stable phases, whereas the octagonal quasicrystal stays as a metastable phase.
    ABSTRACT
    ABSTRACT
    This paper explores the possibility of using gas adsorption for particle-shape control in supported metal catalysis. Calculations are done to identify the kinds of shape changes which are possible due to treatment in an appropriate adgas.... more
    This paper explores the possibility of using gas adsorption for particle-shape control in supported metal catalysis. Calculations are done to identify the kinds of shape changes which are possible due to treatment in an appropriate adgas. Experiments are done to try to verify the concepts. The results show that gas adsorption can be used for particle shape control in supported metal catalysis.
    The metal atoms in the pyrochlore system of compounds (A 2 B 2 O 7 , where A and B are metals) form an infinite three-dimensional network of corner-sharing tetrahedra with cubic symmetry. For antiferromagnetic nearest-neighbor... more
    The metal atoms in the pyrochlore system of compounds (A 2 B 2 O 7 , where A and B are metals) form an infinite three-dimensional network of corner-sharing tetrahedra with cubic symmetry. For antiferromagnetic nearest-neighbor interactions and only B atoms ...
    We used self-consistent field theory to investigate the micellization behavior of A-b-(B-alt-C)n multiblock terpolymers in the presence of a solvent that is selective to the terminal A-block. In particular, we focused on the effects of... more
    We used self-consistent field theory to investigate the micellization behavior of A-b-(B-alt-C)n multiblock terpolymers in the presence of a solvent that is selective to the terminal A-block. In particular, we focused on the effects of χBC, and fA, on the formation of micelles from ABC triblock and A(BC)3 multiblock terpolymers, respectively. We observed a general trend that a segmented packing of B- and C-layers along the axial direction of the micelles is favored than the coaxial packing with the increasing of χBC or decreasing of fA. The separation of B and C blocks within a micelle leads to the formation of a variety of multicompartment micelle morphologies, such as core-shell-corona spherical micelles, hamburgers, and bump-surface micelles, in the ABC triblock copolymers. In the A(BC)3 multiblock terpolymers, we discovered more fascinating micelles by implementing the SCFT simulation than by the DPD simulation. Besides the BC-segmented worm-like micelles, which have been found ...
    The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regular triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied... more
    The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regular triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period L L. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period L L are observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel's cross section. In the case of triangle-shaped cross sections, stacked parallel lamellae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shap...
    ABSTRACT
    ABSTRACT The effects of confining geometries on the self-assembly of cylinder-forming asymmetric diblock copolymers are studied using a simulated annealing technique. Morphological transitions of block copolymers confined inside two... more
    ABSTRACT The effects of confining geometries on the self-assembly of cylinder-forming asymmetric diblock copolymers are studied using a simulated annealing technique. Morphological transitions of block copolymers confined inside two parallel flat walls, cylindrical channels, as well as spherical and ellipsoidal cavities are systematically investigated. Depending on the copolymer composition, confining geometry and degree of structural frustration, a very rich array of confinement-induced morphologies is predicted by the simulations. The results reveal that the dimensionality of the confinement can affect the structure, symmetry and degeneracy of the self-assembled structures. In particular, the effect of spherical confinement is much stronger than that of thin film or cylindrical confinement.
    A classical density functional theory (DFT) is applied to investigate the behavior of compressed polymer brushes composed of hard-sphere chains. The excluded volume interactions among the chain segments are explicitly treated. Two... more
    A classical density functional theory (DFT) is applied to investigate the behavior of compressed polymer brushes composed of hard-sphere chains. The excluded volume interactions among the chain segments are explicitly treated. Two compression systems are used to study the behavior of brush-wall and brush-brush interactions. For the brush-brush systems, an obvious interpenetration zone has been observed. The extent of the interpenetration depends strongly on the grafting density. Furthermore, the repulsive force between the brush and wall or between the two brushes has been obtained as a function of the compression distance. Compared to the prediction of the analytic self-consistent field theory, such force increases more rapidly in the brush-wall compression with high polymer grafting densities or at higher compressions. In the brush-brush compression system, the interpenetration between the two compressed brushes creates a "softer" interaction. The influence of hard-spher...
    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer... more
    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composi...
    The line tension or edge energy of bilayer membranes self-assembled from binary amphiphilic molecules is studied using self-consistent-field theory (SCFT). Specifically, solutions of the SCFT equations corresponding to an infinite... more
    The line tension or edge energy of bilayer membranes self-assembled from binary amphiphilic molecules is studied using self-consistent-field theory (SCFT). Specifically, solutions of the SCFT equations corresponding to an infinite membrane with a circular pore, or an open membrane, are obtained for a coarse-grained model in which the amphiphilic species and hydrophilic solvents are represented by ABandED diblock copolymers and C homopolymers, respectively. The edge energy of the membrane is extracted from the free energy of the open membranes. Results for membranes composed of mixtures of symmetric and cone- or inverse cone-shaped amphiphilic molecules with neutral and/or repulsive interactions are obtained and analyzed. It is observed that an increase in the concentration of the cone-shaped species leads to a decrease of the line tension. In contrast, adding inverse cone-shaped copolymers results in an increase of the line tension. Furthermore, the density profile of the copolymers...

    And 215 more