The folding and stability of globular proteins are determined by a variety of chemical mechanisms... more The folding and stability of globular proteins are determined by a variety of chemical mechanisms, including hydrogen bonds, salt bridges and the hydrophobic effect. Of particular interest are weakly polar interactions involving aromatic rings, which are proposed to regulate the geometry of closely packed protein interiors. Such interactions reflect the electrostatic contribution of pi-electrons and, unlike van der Waals' interactions and the hydrophobic effect, may, in principle, introduce a directional force in a protein's hydrophobic core. Although the weakly polar hypothesis is supported by a statistical analysis of protein structures, the general importance of such contributions to protein folding and stability is unclear. Here, we show the presence of alternative aromatic-aromatic interactions in the two-dimensional nuclear magnetic resonance structure of a mutant Zn finger. Changes in aromatic packing lead in turn to local and non-local differences between the structures of a wild-type and mutant domain. The results provide insight into the evolution of Zn finger sequences and have implications for understanding how geometric relationships may be chemically encoded in a simple sequence template.
The ability to map patterns of gene expression noninvasively in living animals could have impact ... more The ability to map patterns of gene expression noninvasively in living animals could have impact in many areas of biology. Reporter systems compatible with MRI could be particularly valuable, but existing strategies tend to lack sensitivity or specificity. Here we address the challenge of MRI-based gene mapping using the reporter enzyme secreted alkaline phosphatase (SEAP), in conjunction with a water-soluble metalloporphyrin contrast agent. SEAP cleaves the porphyrin into an insoluble product that accumulates at sites of enzyme expression and can be visualized by MRI and optical absorbance. The contrast mechanism functions in vitro, in brain slices, and in animals. The system also provides the possibility of readout both in the living animal and by postmortem histology, and it notably does not require intracellular delivery of the contrast agent. The solubility switch mechanism used to detect SEAP could be adapted for imaging of additional reporter enzymes or endogenous targets.
The folding and stability of globular proteins are determined by a variety of chemical mechanisms... more The folding and stability of globular proteins are determined by a variety of chemical mechanisms, including hydrogen bonds, salt bridges and the hydrophobic effect. Of particular interest are weakly polar interactions involving aromatic rings, which are proposed to regulate the geometry of closely packed protein interiors. Such interactions reflect the electrostatic contribution of pi-electrons and, unlike van der Waals' interactions and the hydrophobic effect, may, in principle, introduce a directional force in a protein's hydrophobic core. Although the weakly polar hypothesis is supported by a statistical analysis of protein structures, the general importance of such contributions to protein folding and stability is unclear. Here, we show the presence of alternative aromatic-aromatic interactions in the two-dimensional nuclear magnetic resonance structure of a mutant Zn finger. Changes in aromatic packing lead in turn to local and non-local differences between the structures of a wild-type and mutant domain. The results provide insight into the evolution of Zn finger sequences and have implications for understanding how geometric relationships may be chemically encoded in a simple sequence template.
The ability to map patterns of gene expression noninvasively in living animals could have impact ... more The ability to map patterns of gene expression noninvasively in living animals could have impact in many areas of biology. Reporter systems compatible with MRI could be particularly valuable, but existing strategies tend to lack sensitivity or specificity. Here we address the challenge of MRI-based gene mapping using the reporter enzyme secreted alkaline phosphatase (SEAP), in conjunction with a water-soluble metalloporphyrin contrast agent. SEAP cleaves the porphyrin into an insoluble product that accumulates at sites of enzyme expression and can be visualized by MRI and optical absorbance. The contrast mechanism functions in vitro, in brain slices, and in animals. The system also provides the possibility of readout both in the living animal and by postmortem histology, and it notably does not require intracellular delivery of the contrast agent. The solubility switch mechanism used to detect SEAP could be adapted for imaging of additional reporter enzymes or endogenous targets.
Uploads
Papers by Alan Jasanoff