Design flood estimations at ungauged catchments are a challenging task in hydrology. Regional flo... more Design flood estimations at ungauged catchments are a challenging task in hydrology. Regional flood frequency analysis (RFFA) is widely used for this purpose. This paper develops artificial intelligence (AI)-based RFFA models (artificial neural networks (ANN) and support vector machine (SVM)) using data from 181 gauged catchments in South-East Australia. Based on an independent testing, it is found that the ANN method outperforms the SVM (the relative error values for the ANN model range 33–54% as compared to 37–64% for the SVM). The ANN and SVM models generate more accurate flood quantiles for smaller return periods; however, for higher return periods, both the methods present a higher estimation error. The results of this study will help to recommend new AI-based RFFA methods in Australia.
Flood is one of the most destructive natural disasters, causing significant economic damage and l... more Flood is one of the most destructive natural disasters, causing significant economic damage and loss of lives. Numerous methods have been introduced to estimate design floods, which include linear and non-linear techniques. Since flood generation is a non-linear process, the use of linear techniques has inherent weaknesses. To overcome these, artificial intelligence (AI)-based non-linear regional flood frequency analysis (RFFA) techniques have been introduced over the last two decades. There are limited articles available in the literature discussing the relative merits/demerits of these AI-based RFFA techniques. To fill this knowledge gap, a scoping review on the AI-based RFFA techniques is presented. Based on the Scopus database, more than 1000 articles were initially selected, which were then screened manually to select the most relevant articles. The accuracy and efficiency of the selected RFFA techniques based on a set of evaluation statistics were compared. Furthermore, the re...
Regional flood frequency analysis (RFFA) is widely used to estimate design floods in ungauged cat... more Regional flood frequency analysis (RFFA) is widely used to estimate design floods in ungauged catchments. Both linear and non-linear methods are adopted in RFFA. The development of the non-linear RFFA method Adaptive Neuro-fuzzy Inference System (ANFIS) using data from 181 gauged catchments in south-eastern Australia is presented in this study. Three different types of ANFIS models, Fuzzy C-mean (FCM), Subtractive Clustering (SC), and Grid Partitioning (GP) were adopted, and the results were compared with the Quantile Regression Technique (QRT). It was found that FCM performs better (with relative error (RE) values in the range of 38–60%) than the SC (RE of 44–69%) and GP (RE of 42–78%) models. The FCM performs better for smaller to medium ARIs (2 to 20 years) (ARI of five years having the best performance), and in New South Wales, over Victoria. In many aspects, the QRT and FCM models perform very similarly. These developed RFFA models can be used in south-eastern Australia to deri...
This research was conducted to present an integrated rainfall-runoff model based on the physical ... more This research was conducted to present an integrated rainfall-runoff model based on the physical characteristics of the watershed, and to predict discharge not only in the outlet, but also at any desired point within the basin. To achieve this goal, a matrix of hydro-climatic variables (i.e. daily rainfall and daily discharge) and geomorphologic characteristics such as upstream drainage area (A), mean slope of watershed (S) and curve number (CN) was designed and simulated using artificial intelligence techniques. Integrated Geomorphology-based Artificial Neural Network (IGANN) model with Root Mean Squared Error (RMSE) of 0.02786 m3 s-1 and Nash-Sutcliffe Efficiency (NSE) of 0.9403 and Integrated Geomorphology-based Adaptive Neuro-Fuzzy Inference System (IGANFIS) model with RMSE of 0.02795 m3 s-1 and NSE of 0.94467 were able to predict the discharge values of all hydrometric stations of the Chalus River watershed with a very low error and high accuracy. The results of cross validatio...
Design flood estimations at ungauged catchments are a challenging task in hydrology. Regional flo... more Design flood estimations at ungauged catchments are a challenging task in hydrology. Regional flood frequency analysis (RFFA) is widely used for this purpose. This paper develops artificial intelligence (AI)-based RFFA models (artificial neural networks (ANN) and support vector machine (SVM)) using data from 181 gauged catchments in South-East Australia. Based on an independent testing, it is found that the ANN method outperforms the SVM (the relative error values for the ANN model range 33–54% as compared to 37–64% for the SVM). The ANN and SVM models generate more accurate flood quantiles for smaller return periods; however, for higher return periods, both the methods present a higher estimation error. The results of this study will help to recommend new AI-based RFFA methods in Australia.
Flood is one of the most destructive natural disasters, causing significant economic damage and l... more Flood is one of the most destructive natural disasters, causing significant economic damage and loss of lives. Numerous methods have been introduced to estimate design floods, which include linear and non-linear techniques. Since flood generation is a non-linear process, the use of linear techniques has inherent weaknesses. To overcome these, artificial intelligence (AI)-based non-linear regional flood frequency analysis (RFFA) techniques have been introduced over the last two decades. There are limited articles available in the literature discussing the relative merits/demerits of these AI-based RFFA techniques. To fill this knowledge gap, a scoping review on the AI-based RFFA techniques is presented. Based on the Scopus database, more than 1000 articles were initially selected, which were then screened manually to select the most relevant articles. The accuracy and efficiency of the selected RFFA techniques based on a set of evaluation statistics were compared. Furthermore, the re...
Regional flood frequency analysis (RFFA) is widely used to estimate design floods in ungauged cat... more Regional flood frequency analysis (RFFA) is widely used to estimate design floods in ungauged catchments. Both linear and non-linear methods are adopted in RFFA. The development of the non-linear RFFA method Adaptive Neuro-fuzzy Inference System (ANFIS) using data from 181 gauged catchments in south-eastern Australia is presented in this study. Three different types of ANFIS models, Fuzzy C-mean (FCM), Subtractive Clustering (SC), and Grid Partitioning (GP) were adopted, and the results were compared with the Quantile Regression Technique (QRT). It was found that FCM performs better (with relative error (RE) values in the range of 38–60%) than the SC (RE of 44–69%) and GP (RE of 42–78%) models. The FCM performs better for smaller to medium ARIs (2 to 20 years) (ARI of five years having the best performance), and in New South Wales, over Victoria. In many aspects, the QRT and FCM models perform very similarly. These developed RFFA models can be used in south-eastern Australia to deri...
This research was conducted to present an integrated rainfall-runoff model based on the physical ... more This research was conducted to present an integrated rainfall-runoff model based on the physical characteristics of the watershed, and to predict discharge not only in the outlet, but also at any desired point within the basin. To achieve this goal, a matrix of hydro-climatic variables (i.e. daily rainfall and daily discharge) and geomorphologic characteristics such as upstream drainage area (A), mean slope of watershed (S) and curve number (CN) was designed and simulated using artificial intelligence techniques. Integrated Geomorphology-based Artificial Neural Network (IGANN) model with Root Mean Squared Error (RMSE) of 0.02786 m3 s-1 and Nash-Sutcliffe Efficiency (NSE) of 0.9403 and Integrated Geomorphology-based Adaptive Neuro-Fuzzy Inference System (IGANFIS) model with RMSE of 0.02795 m3 s-1 and NSE of 0.94467 were able to predict the discharge values of all hydrometric stations of the Chalus River watershed with a very low error and high accuracy. The results of cross validatio...
Uploads
Papers by Mehdi Vafakhah