Chen Chen received the B.S. and M.S. degrees in optical engineering from University of Electronic Science and Technology of China (UESTC), Chengdu, China, in 2010 and 2013 respectively. He is currently pursuing the Ph.D. degree in School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore. His research interest is orthogonal frequency division multiplexing (OFDM) and it applications in optical wireless communications (OWC) and passive optical networks (PON). Supervisors: Prof. Wen-De Zhong
— For joint peak-to-average power ratio (PAPR) reduction and physical layer security enhancement,... more — For joint peak-to-average power ratio (PAPR) reduction and physical layer security enhancement, we propose a chaos IQ-encryption-based optimal frame transmission technique in an orthogonal frequency-division multiple access-based passive optical network (OFDMA-PON). The chaos IQ-encryption technique is utilized to enhance the physical layer security. In encrypting, the in-phase (I) and quadrature-phase (Q) parts of the quadrature amplitude modulation (QAM) symbols are coded with two phase sequences separately, which are generated using a 2-D logistic map. The encrypted OFDM symbols comprise an OFDM frame, and the frame with the minimum PAPR is transmitted to the optical network unit side. Thus, the transmitted OFDM signal is of a joint low PAPR and high physical layer security. In the demonstration, an 11.32-Gb/s encrypted 16 QAM OFDM signal has been experimentally transmitted over 25-km standard single mode fiber in an intensity-modulation/direct-detection OFDMA-PON. Index Terms— Passive optical network (PON), orthogonal frequency-division multiple access (OFDMA), quadrature amplitude modulation (QAM), chaos encryption.
We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN... more We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible.
— For joint peak-to-average power ratio (PAPR) reduction and physical layer security enhancement,... more — For joint peak-to-average power ratio (PAPR) reduction and physical layer security enhancement, we propose a chaos IQ-encryption-based optimal frame transmission technique in an orthogonal frequency-division multiple access-based passive optical network (OFDMA-PON). The chaos IQ-encryption technique is utilized to enhance the physical layer security. In encrypting, the in-phase (I) and quadrature-phase (Q) parts of the quadrature amplitude modulation (QAM) symbols are coded with two phase sequences separately, which are generated using a 2-D logistic map. The encrypted OFDM symbols comprise an OFDM frame, and the frame with the minimum PAPR is transmitted to the optical network unit side. Thus, the transmitted OFDM signal is of a joint low PAPR and high physical layer security. In the demonstration, an 11.32-Gb/s encrypted 16 QAM OFDM signal has been experimentally transmitted over 25-km standard single mode fiber in an intensity-modulation/direct-detection OFDMA-PON. Index Terms— Passive optical network (PON), orthogonal frequency-division multiple access (OFDMA), quadrature amplitude modulation (QAM), chaos encryption.
We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN... more We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible.
Uploads
Papers by Chen Chen