Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Cold spray is an emerging additive manufacturing technology used in the aerospace industry to repair damaged components made of expensive metal alloys. The cold sprayed layer is prone to surface integrity issues such as high porosity and... more
Cold spray is an emerging additive manufacturing technology used in the aerospace industry to repair damaged components made of expensive metal alloys. The cold sprayed layer is prone to surface integrity issues such as high porosity and inadequate bonding at the substrate-coating interface, which may cause premature failure of the repaired component. This study explored the use of mechanical peening as a post-processing method to improve the surface integrity of the cold sprayed component by modifying mechanical properties near the surface. Two mechanical peening processes, deep cold rolling (DCR) and controlled hammer peening (CHP), were utilized to improve cold sprayed Ti-6Al-4V coating on the Ti-6Al-4V substrate. Experimental results indicate that DCR and CHP increase the strength of the bond between the coating and substrate due to introduction of compressive residual stresses. In addition, porosity is also reduced by as much as 71%. The improvement is attributed to both the co...
Laser ablation is a rapid-material removal technique with potential application in remanufacturing of bearings to clean damaged surfaces. This study reports the ablation morphology and change in surface composition of 52100 bearing steel... more
Laser ablation is a rapid-material removal technique with potential application in remanufacturing of bearings to clean damaged surfaces. This study reports the ablation morphology and change in surface composition of 52100 bearing steel irradiated with a femtosecond laser. A smooth ablated surface was achieved by operating the laser at fluence just above the ablation threshold, but higher fluences resulted in roughened surfaces with recast formation. Such coarse morphology is believed to result from higher energy deposition and surface melting. Minimal oxidation occurred at lower fluences. Periodic ripple patterns formed in the ablated area at low fluence; their morphology and possible formation mechanism is discussed.
Underwater laser hardening might produce better surface mechanical properties than conventional laser hardening in air due to additional cooling effect by water. However, it has not been studied in detail. This study investigates the... more
Underwater laser hardening might produce better surface mechanical properties than conventional laser hardening in air due to additional cooling effect by water. However, it has not been studied in detail. This study investigates the effect of water layer on laser surface hardening of AISI 1055 steel. It is found that laser surface hardening is feasible with water layer up to 3[Formula: see text]mm above the steel surface. A higher surface hardness is achieved during underwater processing. This is attributed to fast cooling by water which facilitates complete martensitic transformation. Nevertheless, the hardened area is smaller than that in conventional laser hardening in air due to attenuation of laser energy. Above 3[Formula: see text]mm, the laser beam is severely attenuated due to formation of vapor plume. Furthermore, it is found that surface oxidation cannot be prevented completely even during underwater treatment, and the water movement results in random distribution of meta...
Research Interests:
Research Interests:
Research Interests:
Research Interests: