C*-algebra
C*-algebra's (uitgesproken als "C-ster") vormen een belangrijk gebied van onderzoek in de functionaalanalyse, een deelgebied van de wiskunde.
Een C*-algebra is een Banach-algebra uitgerust met een involutie * zodanig dat voor iedere vector geldt dat [1]
Het prototypische voorbeeld van een C*-algebra is een complexe algebra A van lineaire operatoren op een complexe Hilbertruimte met twee extra eigenschappen:
- A is een topologisch gesloten verzameling in de normtopologie van de operatoren.
- A is gesloten onder de operatie van het nemen van toevoegingen van operatoren.
Definitie
[bewerken | brontekst bewerken]In de context van een Banach-algebra verstaat met onder involutie een afbeelding die niet alleen haar eigen inverse is (de gebruikelijke definitie van een involutie) maar die bovendien als volgt de structuur van de Banach-algebra respecteert:[1]
Een C*-algebra is een Banach-algebra uitgerust met een involutie die voldoet aan de normgelijkheid
Voorbeelden
[bewerken | brontekst bewerken]Vierkante matrices
[bewerken | brontekst bewerken]In de complexe Euclidische vectorruimte wordt de norm van een vector gegeven door
De complexe vectorruimte der vierkante complexe -matrices kan worden opgevat als een algebra van lineaire transformaties van Ze wordt een Banach-algebra door de norm van een matrix te definiëren als
De operatie die een matrix omvormt in zijn complex toegevoegde getransponeerde
is een involutie die aan de voorwaarden van een C*-algebra voldoet.
Complexe getallen
[bewerken | brontekst bewerken]Als bijzonder geval hiervan is zelf een complexe Banach-algebra, die met de operatie 'toegevoegd complex getal' een C*-algebra wordt.
Hilbertruimte-operatoren
[bewerken | brontekst bewerken]Algemener vormt de Banach-algebra der continue lineaire transformaties van een Hilbertruimte een C*-algebra voor de involutie die elke operator omvormt in zijn toegevoegde operator : dit is de unieke afbeelding die voldoet aan
Continue functies
[bewerken | brontekst bewerken]Als een compacte topologische ruimte is, dan is de vectorruimte der complexwaardige continue functies op een Banach-algebra voor de puntsgewijze vermenigvuldiging van functies en voor de maximumnorm
De bewerking die met elke functie haar complex toegevoegde functie associeert, maakt van een (commutatieve) C*-algebra.
Deelalgebra
[bewerken | brontekst bewerken]Een gesloten Banach-deelalgebra van een gegeven C*-algebra die bovendien stabiel blijft onder de involutie, is opnieuw een C*-algebra. In combinatie met het hogergenoemde voorbeeld levert dit het typische voorbeeld uit de inleidende paragraaf.
Tegenvoorbeeld
[bewerken | brontekst bewerken]De ruimte hierboven, met dezelfde involutie (complex toegevoegde van de getransponeerde matrix) is niet noodzakelijk een C*-algebra als met een andere norm wordt gewerkt, bijvoorbeeld de norm die met een matrix de grootste absolute waarde van een van zijn matrixelementen associeert.