Thirty-two genome sequences of various Vibrio-naceae members are compared, with emphasis on what ... more Thirty-two genome sequences of various Vibrio-naceae members are compared, with emphasis on what makes V. cholerae unique. As few as 1,000 gene families are conserved across all the Vibrionaceae genomes analysed ; this fraction roughly doubles for gene families conserved within the species V. cholerae. Of these, approximately 200 gene families that cluster on various locations of the genome are not found in other sequenced Vibrionaceae; these are possibly unique to the V. cholerae species. By comparing gene family content of the analysed genomes, the relatedness to a particular species is identified for two unspeciated genomes. Conversely, two genomes presumably belonging to the same species have suspiciously dissimilar gene family content. We are able to identify a number of genes that are conserved in, and unique to, V. cholerae. Some of these genes may be crucial to the niche adaptation of this species.
Bacterial pathogens are being sequenced at an increasing rate. To many microbiologists, it appear... more Bacterial pathogens are being sequenced at an increasing rate. To many microbiologists, it appears that there simply is not enough time to digest all the information suddenly available. In this chapter we present several tools for comparison of sequenced pathogenic genomes, and discuss differences between pathogens and non-pathogens. The presented tools allow comparison of large numbers of genomes in a hypothesis-driven manner. Visualization of the results is very important for clear presentation of the results and various ways of graphical representation are introduced.
More than 80% of the microbial genomes in GenBank are of 'draft' quality (12,553 draft vs... more More than 80% of the microbial genomes in GenBank are of 'draft' quality (12,553 draft vs. 2,679 finished, as of October, 2013). We have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes had quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have...
We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of p... more We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we measured the fraction of each genome which contains purine (or pyrimidine) tracts of lengths of 10 bp or longer (hereafter referred to as 'purine tracts'), as well as stretches of alternating pyrimidines/purine (pyr/pur tracts') of the same length. Using this criteria, a random sequence would be expected to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr/pur tracts was slightly less than expected, with an average of 0.8%. O...
Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, ... more Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the mea...
We present the pan-genome tree as a tool for visualizing similarities and differences between clo... more We present the pan-genome tree as a tool for visualizing similarities and differences between closely related microbial genomes within a species or genus. Distance between genomes is computed as a weighted relative Manhattan distance based on gene family presence/absence. The weights can be chosen with emphasis on groups of gene families conserved to various degrees inside the pan-genome. The software is available for free as an R-package.
We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in additi... more We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1 specific protein families, and these include several broad activities: pyridoxine 5' phosphate synthetase, glucosylceramidase, heme transport, DNA ligase, amino acid binding, and ribosomal components; in contrast, chromosome 2 specific protein families have only 66 Molecular Function GO terms and include many membrane-associated activities, such as ion channels, transmembrane transporters, and electron transport chain proteins. Thus, it appears that whilst there are many "housekeeping systems" encoded in chromosome 1, there are far fewer core functions found in chromosome 2. However, the presence of many membrane-associated encoded proteins in chromosome 2 is surprising.
The comparative genomics of prokaryotes has shown the presence of conserved regions containing hi... more The comparative genomics of prokaryotes has shown the presence of conserved regions containing highly similar genes (the 'core genome') and other regions that vary in gene content (the 'flexible' regions). A significant part of the latter is involved in surface structures that are phage recognition targets. Another sizeable part provides for differences in niche exploitation. Metagenomic data indicates that natural populations of prokaryotes are composed of assemblages of clonal lineages or "meta-clones" that share a core of genes but contain a high diversity by varying the flexible component. This meta-clonal diversity is maintained by a collection of phages that equalize the populations by preventing any individual clonal lineage from hoarding common resources. Thus, this polyclonal assemblage and the phages preying upon them constitute natural selection units.
Thirty-two genome sequences of various Vibrio-naceae members are compared, with emphasis on what ... more Thirty-two genome sequences of various Vibrio-naceae members are compared, with emphasis on what makes V. cholerae unique. As few as 1,000 gene families are conserved across all the Vibrionaceae genomes analysed ; this fraction roughly doubles for gene families conserved within the species V. cholerae. Of these, approximately 200 gene families that cluster on various locations of the genome are not found in other sequenced Vibrionaceae; these are possibly unique to the V. cholerae species. By comparing gene family content of the analysed genomes, the relatedness to a particular species is identified for two unspeciated genomes. Conversely, two genomes presumably belonging to the same species have suspiciously dissimilar gene family content. We are able to identify a number of genes that are conserved in, and unique to, V. cholerae. Some of these genes may be crucial to the niche adaptation of this species.
Bacterial pathogens are being sequenced at an increasing rate. To many microbiologists, it appear... more Bacterial pathogens are being sequenced at an increasing rate. To many microbiologists, it appears that there simply is not enough time to digest all the information suddenly available. In this chapter we present several tools for comparison of sequenced pathogenic genomes, and discuss differences between pathogens and non-pathogens. The presented tools allow comparison of large numbers of genomes in a hypothesis-driven manner. Visualization of the results is very important for clear presentation of the results and various ways of graphical representation are introduced.
More than 80% of the microbial genomes in GenBank are of 'draft' quality (12,553 draft vs... more More than 80% of the microbial genomes in GenBank are of 'draft' quality (12,553 draft vs. 2,679 finished, as of October, 2013). We have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes had quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have...
We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of p... more We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we measured the fraction of each genome which contains purine (or pyrimidine) tracts of lengths of 10 bp or longer (hereafter referred to as 'purine tracts'), as well as stretches of alternating pyrimidines/purine (pyr/pur tracts') of the same length. Using this criteria, a random sequence would be expected to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr/pur tracts was slightly less than expected, with an average of 0.8%. O...
Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, ... more Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the mea...
We present the pan-genome tree as a tool for visualizing similarities and differences between clo... more We present the pan-genome tree as a tool for visualizing similarities and differences between closely related microbial genomes within a species or genus. Distance between genomes is computed as a weighted relative Manhattan distance based on gene family presence/absence. The weights can be chosen with emphasis on groups of gene families conserved to various degrees inside the pan-genome. The software is available for free as an R-package.
We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in additi... more We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1 specific protein families, and these include several broad activities: pyridoxine 5' phosphate synthetase, glucosylceramidase, heme transport, DNA ligase, amino acid binding, and ribosomal components; in contrast, chromosome 2 specific protein families have only 66 Molecular Function GO terms and include many membrane-associated activities, such as ion channels, transmembrane transporters, and electron transport chain proteins. Thus, it appears that whilst there are many "housekeeping systems" encoded in chromosome 1, there are far fewer core functions found in chromosome 2. However, the presence of many membrane-associated encoded proteins in chromosome 2 is surprising.
The comparative genomics of prokaryotes has shown the presence of conserved regions containing hi... more The comparative genomics of prokaryotes has shown the presence of conserved regions containing highly similar genes (the 'core genome') and other regions that vary in gene content (the 'flexible' regions). A significant part of the latter is involved in surface structures that are phage recognition targets. Another sizeable part provides for differences in niche exploitation. Metagenomic data indicates that natural populations of prokaryotes are composed of assemblages of clonal lineages or "meta-clones" that share a core of genes but contain a high diversity by varying the flexible component. This meta-clonal diversity is maintained by a collection of phages that equalize the populations by preventing any individual clonal lineage from hoarding common resources. Thus, this polyclonal assemblage and the phages preying upon them constitute natural selection units.
This book is part of the series Computing for Comparative Microbial Genomics. The book is written... more This book is part of the series Computing for Comparative Microbial Genomics. The book is written for microbiologists needing an introduction to genomics as well as for bioinformaticists who need to be introduced to microbiology. First, a brief overview of molecular biology and of the concept of sequences as biological information are given. There are four main parts: Introduction, Comparative Genomics, Transcriptomics and Proteomics, and Microbial Communities. "It is a very well-written review of genomics and proteomics of microbes, and makes convincing arguments for the practicality of applying bioinformatics to the study of communities of these species. The references are well chosen. The writing style is superb. … There is an amazing amount of interesting material… The book is probably more suitable as an introduction to contemporary applications of bioinformatics and microbiology for computational scientists." (Anthony J. Duben, ACM Computing Reviews,
Uploads
Papers by David Ussery