OFFSET
0,3
COMMENTS
a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle and postcomposition with automorphisms of the 2-bouquet. (Boldi et al.) - Sebastiano Vigna, Jan 08 2018
For n >= 3, also the number of distinct planar embeddings of the n-sunlet graph. - Eric W. Weisstein, May 21 2024
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..3335 (first 201 terms from T. D. Noe)
Joerg Arndt, Matters Computational (The Fxtbook)
Paolo Boldi and Sebastiano Vigna, Fibrations of Graphs, Discrete Math., 243 (2002), 21-66.
H. Bottomley, Initial terms of A000011 and A000013
Aharon Davidson, From Planck Area to Graph Theory: Topologically Distinct Black Hole Microstates, arXiv:1907.03090 [gr-qc], 2019.
Daniel T. Eatough and Keith A. Seffen, Calculating the Fold Angles of Any Vertex Roof Using a Spherical Image Technique, J. Mechanisms Robotics (2020) Vol. 12, No. 3, 031004.
N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
W. D. Hoskins and Anne Penfold Street, Twills on a given number of harnesses, J. Austral. Math. Soc. Ser. A 33 (1982), no. 1, 1-15.
W. D. Hoskins and A. P. Street, Twills on a given number of harnesses, J. Austral. Math. Soc. (Series A), 33 (1982), 1-15. (Annotated scanned copy)
Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021.
Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
A. P. Street, Letter to N. J. A. Sloane, N.D.
Zhe Sun, T. Suenaga, P. Sarkar, S. Sato, M. Kotani, and H. Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nat. Acad. Sci. USA, vol. 113 no. 29, pp. 8109-8114, doi: 10.1073/pnas.1606530113.
Eric Weisstein's World of Mathematics, Planar Embedding.
Eric Weisstein's World of Mathematics, Sunlet Graph.
A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264; doi:10.1246/bcsj.20140204. See Tables 1 and 2 (and text).
FORMULA
a(n) = (A000013(n) + 2^floor(n/2))/2.
EXAMPLE
From Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 09 2009: (Start)
The binary bracelets for small n are:
n: bracelets
0: (the empty bracelet)
1: 0
2: 00, 01
3: 000, 001
4: 0000, 0001, 0011, 0101
5: 00000, 00001, 00011, 00101
6: 000000, 000001, 000011, 000101, 000111, 001001, 001011, 010101
(End)
MAPLE
with(numtheory): A000011 := proc(n) local s, d; if n = 0 then RETURN(1) else s := 2^(floor(n/2)); for d in divisors(n) do s := s+(phi(2*d)*2^(n/d))/(2*n); od; RETURN(s/2); fi; end;
MATHEMATICA
a[n_] := Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 2^Floor[n/2], Divisors[n]]/2
a[ n_] := If[ n < 1, Boole[n == 0], 2^Quotient[n, 2] / 2 + DivisorSum[ n, EulerPhi[2 #] 2^(n/#) &] / (4 n)]; (* Michael Somos, Dec 19 2014 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2^(n\2) / 2 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; /* Michael Somos, Jun 03 2002 */
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
Better description from Christian G. Bower
More terms from David W. Wilson, Jan 13 2000
STATUS
approved