Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A001392
a(n) = 9*binomial(2n,n-4)/(n+5).
(Formerly M4637 N1981)
26
1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, 6216210, 24582285, 96768360, 379629720, 1485507600, 5801732460, 22626756594, 88152205554, 343176898988, 1335293573130, 5193831553416, 20198233818840, 78542105700240, 305417807763705
OFFSET
4,2
COMMENTS
Number of n-th generation vertices in the tree of sequences with unit increase labeled by 8 (cf. Zoran Sunic reference) - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=4. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+4,n-4). - Emeric Deutsch, May 30 2004
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Athanasios Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math., Vol. 14 (1957), pp. 405-414. [Annotated scan of selected pages]
Athanasios Papoulis, A new method of inversion of the Laplace transform, Quart. Applied Math., Vol. 14 (1957), pp. 405-414.
John Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., Vol. 29, No. 129 (1975), pp. 215-222.
Zoran Sunic, Self-Describing Sequences and the Catalan Family Tree, Electronic Journal of Combinatorics, Vol. 10 (2003), Article #N5.
FORMULA
Expansion of x^4*C^9, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=8, a(n-4)=(-1)^(n-8)*coeff(charpoly(A,x),x^8). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jun 20 2013
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/24)*x^4*1F1(9/2; 10; 4*x).
a(n) ~ 9*4^n/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 158*Pi/(81*sqrt(3)) - 649/270.
Sum_{n>=4} (-1)^n/a(n) = 52076*log(phi)/(225*sqrt(5)) - 22007/450, where phi is the golden ratio (A001622). (End)
EXAMPLE
G.f. = x^4 + 9*x^5 + 54*x^6 + 273*x^7 + 1260*x^8 + 5508*x^9 + 23256*x^10 + ...
MAPLE
A001392:=n->9*binomial(2*n, n-4)/(n+5): seq(A001392(n), n=4..40); # Wesley Ivan Hurt, Apr 11 2017
MATHEMATICA
Table[9*Binomial[2n, n-4]/(n+5), {n, 4, 30}] (* Harvey P. Dale, Mar 03 2011 *)
PROG
(PARI) a(n)=9*binomial(n+n, n-4)/(n+5) \\ Charles R Greathouse IV, Jul 31 2011
CROSSREFS
First differences are in A026015.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Sequence in context: A359722 A027472 A022637 * A188428 A243415 A276602
KEYWORD
nonn,easy
EXTENSIONS
More terms from Harvey P. Dale, Mar 03 2011
STATUS
approved