Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A002374
Largest prime <= n in any decomposition of 2n into a sum of two odd primes.
(Formerly M2278 N0900)
13
3, 3, 5, 5, 7, 5, 7, 7, 11, 11, 13, 11, 13, 13, 17, 17, 19, 17, 19, 13, 23, 19, 19, 23, 23, 19, 29, 29, 31, 23, 29, 31, 29, 31, 37, 29, 37, 37, 41, 41, 43, 41, 43, 31, 47, 43, 37, 47, 43, 43, 53, 47, 43, 53, 53, 43, 59, 59, 61, 53, 59, 61, 59, 61, 67, 53, 67, 67, 71, 71, 73, 59
OFFSET
3,1
COMMENTS
Sequence A112823 is identical except that it is very naturally extended to a(2) = 2, i.e., the word "odd" is dropped from the definition. - M. F. Hasler, May 03 2019
REFERENCES
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 80.
N. Pipping, Neue Tafeln für das Goldbachsche Gesetz nebst Berichtigungen zu den Haussnerschen Tafeln, Finska Vetenskaps-Societeten, Comment. Physico Math. 4 (No. 4, 1927), pp. 1-27.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = n - A047160(n) = A112823(n) (for n >= 3). - Jason Kimberley, Aug 31 2011
MATHEMATICA
nmax = 74; a[n_] := (k = 0; While[k < n && (!PrimeQ[n-k] || !PrimeQ[n+k]), k++]; If[k == n, n+1, n-k]); Table[a[n], {n, 3, nmax}](* Jean-François Alcover, Nov 14 2011, after Jason Kimberley *)
lp2n[n_]:=Max[Select[Flatten[Select[IntegerPartitions[2n, {2}], AllTrue[ #, PrimeQ]&]], #<=n&]]; Array[lp2n, 80, 2] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 08 2018 *)
PROG
(PARI) a(n)=forstep(k=n, 1, -1, if(isprime(k) && isprime(2*n-k), return(k))) \\ Charles R Greathouse IV, Feb 07 2017
(PARI) A002374(n)=forprime(q=n, 2*n, isprime(2*n-q)&&return(2*n-q)) \\ M. F. Hasler, May 03 2019
CROSSREFS
Essentially the same as A112823. - Franklin T. Adams-Watters, Jan 25 2010
Sequence in context: A004649 A367004 A328298 * A261046 A226482 A338777
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Sep 21 2000
STATUS
approved