OFFSET
1,4
COMMENTS
a(n) is the size of the Frattini subgroup of the cyclic group C_n - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 07 2001.
Also of the Frattini subgroup of the dihedral group with 2*n elements. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 01 2002
Number of solutions to x^m==0 (mod n) provided that n < 2^(m+1), i.e. the sequence of sequences A000188, A000189, A000190, etc. converges to this sequence. - Henry Bottomley, Sep 18 2001
a(n) is the number of nilpotent elements in the ring Z/nZ. - Laszlo Toth, May 22 2009
The sequence of partial products of a(n) is A085056(n). - Peter Luschny, Jun 29 2009
The first occurrence of n in this sequence is at A064549(n). - Franklin T. Adams-Watters, Jul 25 2014
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Henry Bottomley, Some Smarandache-type multiplicative sequences.
Steven R. Finch, Idempotents and Nilpotents Modulo n, arXiv:math/0605019 [math.NT], 2006-2017.
FORMULA
Multiplicative with a(p^e) = p^(e-1). - Vladeta Jovovic, Jul 23 2001
a(n) = n/rad(n) = n/A007947(n) = sqrt(J_2(n)/J_2(rad(n))), where J_2(n) is A007434. - Enrique Pérez Herrero, Aug 31 2010
a(n) = (J_k(n)/J_k(rad(n)))^(1/k), where J_k is the k-th Jordan Totient Function: (J_2 is A007434 and J_3 A059376). - Enrique Pérez Herrero, Sep 03 2010
a(n) = Product_{k = 1..A001221(n)} (A027748(n,k)^(A124010(n,k)-1)). - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{k=1..n}(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 11 2016
a(n) = e^[Sum_{k=2..n} (floor(n/k)-floor((n-1)/k))*(1-A010051(k))*Mangoldt(k)] where Mangoldt is the Mangoldt function. - Anthony Browne, Jun 16 2016
a(n) = Sum_{d|n} mu(d) * phi(d) * (n/d), where mu(d) is the Moebius function and phi(d) is the Euler totient function (rephrases formula of Dec 2011). - Daniel Suteu, Jun 19 2018
G.f.: Sum_{k>=1} mu(k)*phi(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
Dirichlet g.f.: Product_{primes p} (1 + 1/(p^s - p)). - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k).
a(n) = Sum_{k=1..n} mu(gcd(n,k))*(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
MAPLE
A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
seq(A003557(n), n=1..98); # Peter Luschny, Mar 23 2011
seq(n / NumberTheory:-Radical(n), n = 1..98); # Peter Luschny, Jul 20 2021
MATHEMATICA
Prepend[ Array[ #/Times@@(First[ Transpose[ FactorInteger[ # ] ] ])&, 100, 2 ], 1 ] (* Olivier Gérard, Apr 10 1997 *)
PROG
(Sage) def A003557(n) : return n*mul(1/p for p in prime_divisors(n))
[A003557(n) for n in (1..98)] # Peter Luschny, Jun 10 2012
(Haskell)
a003557 n = product $ zipWith (^)
(a027748_row n) (map (subtract 1) $ a124010_row n)
-- Reinhard Zumkeller, Dec 20 2013
(PARI) a(n)=n/factorback(factor(n)[, 1]) \\ Charles R Greathouse IV, Nov 17 2014
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 20 2020
(Python)
from sympy.ntheory.factor_ import core
from sympy import divisors
def a(n): return n / max(i for i in divisors(n) if core(i) == i)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
(Python)
from math import prod
from sympy import primefactors
def A003557(n): return n//prod(primefactors(n)) # Chai Wah Wu, Nov 04 2022
(Magma) [(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Nov 02 2018
(Julia)
using Nemo
function A003557(n)
n < 4 && return 1
q = prod([p for (p, e) ∈ Nemo.factor(fmpz(n))])
return n == q ? 1 : div(n, q)
end
[A003557(n) for n in 1:90] |> println # Peter Luschny, Feb 07 2021
CROSSREFS
Cf. A007947, A062378, A062379, A064549, A300717 (Möbius transform), A326306 (inv. Möbius transf.), A328572.
KEYWORD
nonn,easy,mult
AUTHOR
EXTENSIONS
Secondary definition added to the name by Antti Karttunen, Jun 08 2021
STATUS
approved