Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A005191
Central pentanomial coefficients: largest coefficient of (1 + x + ... + x^4)^n.
(Formerly M3891)
53
1, 1, 5, 19, 85, 381, 1751, 8135, 38165, 180325, 856945, 4091495, 19611175, 94309099, 454805755, 2198649549, 10651488789, 51698642405, 251345549849, 1223798004815, 5966636799745, 29125608152345, 142330448514875, 696235630761115, 3408895901222375
OFFSET
0,3
COMMENTS
Coefficient of x^n in ((1-x^10)/((1-x^5)(1-x^2)(1-x)))^n. - Michael Somos, Sep 24 2003
Note that n divides a(n+1) - a(n). - T. D. Noe, Mar 16 2005
Terms that are not a multiple of 5 have zero density, namely, there are fewer than n^(log(4)/log(5)) such terms among A005191(1..n). In particular, A005191(5k+2) and A005191(5k+4) are multiples of 5 for every k. - Max Alekseyev, Apr 25 2005
Number of n-step 1-D walks ending at the origin with steps of size 0, 1 or 2. - David Scambler, Apr 09 2012
Number of compositions of 2n into exactly n nonnegative parts <= four. a(2) = 5: [4,0], [3,1], [2,2], [1,3], [0,4]. - Alois P. Heinz, Sep 13 2018
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 603-604.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
Armen G. Bagdasaryan, Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
Lyle E. Muller and Michelle Rudolph-Lilith, On a link between Dirichlet kernels and central multinomial coefficients, Discrete Mathematics, Volume 338, Issue 9, 6 September 2015, Pages 1567-1572.
M. Rudolph-Lilith, L. E. Muller, On an explicit representation of central (2k+1)-nomial coefficients, arXiv preprint arXiv:1403.5942 [math.CO], 2014.
FORMULA
a(n) = Sum_{k=0..floor(2n/5)} binomial(n,k)*binomial(-n, 2n-5k); a(n) = (5^n + Sum_{j=1..2n-1} (sin(5j*Pi/(2n))/sin(j*Pi/(2n)))^n)/(2n) - 2. - Max Alekseyev, Mar 04 2005
D-finite with recurrence: 2*n*(2*n-1)*(3*n-4)*a(n) - (3*n-1)*(19*n^2-38*n+18)*a(n-1) - 5*(n-1)*(3*n-4)*(2*n-1)*a(n-2) + 25*(n-1)*(n-2)*(3*n-1)*a(n-3) = 0. - R. J. Mathar, Feb 21 2010 [Proved using the Almkvist-Zeilberger algorithm in EKHAD. - Doron Zeilberger, Apr 02 2013]
G.f.: sqrt((-5*x+2+2*sqrt(5*x^2-6*x+1))/(25*x^3-10*x^2-19*x+4)). - Mark van Hoeij, May 06 2013
a(n) ~ 5^n/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 09 2013
a(n) = Sum_{i=0..n/2} Sum_{j=0..n} Sum_{q=n..2*n}(f); f=( n!/((q - n)!*(j - 2*q + 2*n)!*(i - 2*j + q)!*(j - 2*i)!*i!) ); f=0 for (j - 2*q + 2*n)<0 or (i - 2*j + q)<0 or (j - 2*i)<0. Also see formula in Links section. - Zagros Lalo, Sep 25 2018
MAPLE
seq(coeff(series(((1-x^10)/((1-x^5)*(1-x^2)*(1-x)))^n, x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Sep 26 2018
MATHEMATICA
Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j, 0, 4}]^n], x^(2*n)], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)
a[n_] := a[n] = Sum[n!/((q - n)!*(j - 2*q + 2*n)!*(i - 2*j + q)!*(j - 2*i)!*i!), {i, 0, n/2}, {j, 0, n}, {q, n, 2*n}]; Table[a[n], {n, 0, 29}] (* Zagros Lalo, Sep 25 2018 *)
CoefficientList[Series[Sqrt[(-5x+2+2Sqrt[5x^2-6x+1])/(25x^3-10x^2-19x+4)], {x, 0, 30}], x] (* Harvey P. Dale, Aug 04 2021 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(((1-x^5)/(1-x)+x*O(x^(2*n)))^n, 2*n))
(PARI) a(n)=if(n<0, 0, polcoeff(((1-x^10)/((1-x^5)*(1-x^2)*(1-x))+x*O(x^n))^n, n))
(PARI) a(n) = sum(k=0, (2*n)\5, binomial(n, k)*binomial(-n, 2*n-5*k)) /* Max Alekseyev */
(PARI) a(n) = round((5^n+sum(j=1, 2*n-1, (sin(5*Pi*j/2/n)/sin(Pi*j/2/n))^n))/2/n)-2 /* Max Alekseyev */
(PARI) a(n) = vecmax(Vec(Pol(vector(5, k, 1))^n)); \\ Michel Marcus, Jan 29 2017
(GAP) List([0..25], n->Sum([0..Int(2*n/5)], k->Binomial(n, k)*Binomial(-n, 2*n-5*k))); # Muniru A Asiru, Sep 26 2018
KEYWORD
nonn
STATUS
approved