OFFSET
0,1
COMMENTS
Understood as a binary number, Sum_{k>=0} a(k)/2^k, the resulting decimal expansion is 1.910278797207865891... = Fibonacci_binary+0.5 (see A084119) or Fibonacci_binary_constant-0.5 (see A124091), respectively. - Hieronymus Fischer, May 14 2007
a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=25*x^4-10*m^2*x^2+m^4-16. Also a(n)=1 iff floor(s)<>floor(c) or ceiling(s)<>ceiling(c) where s=arcsinh(sqrt(5)*n/2)/log(phi), c=arccosh(sqrt(5)*n/2)/log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, May 17 2007
Image, under the map sending a,b,c -> 1, d,e,f -> 0, of the fixed point, starting with a, of the morphism sending a -> ab, b -> c, c -> cd, d -> d, e -> ef, f -> e. - Jeffrey Shallit, May 14 2016
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
D. Bailey et al., On the binary expansions of algebraic numbers, Journal de Théorie des Nombres de Bordeaux (2004), Volume: 16, Issue: 3, page 487-518.
Wikipedia, Fibonacci number
FORMULA
G.f.: (Sum_{k>=0} x^A000045(k)) - x. - Hieronymus Fischer, May 17 2007
MAPLE
a:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
seq(a(n), n=0..144); # Alois P. Heinz, Dec 06 2020
MATHEMATICA
Join[{1}, With[{fibs=Fibonacci[Range[15]]}, If[MemberQ[fibs, #], 1, 0]& /@Range[100]]] (* Harvey P. Dale, May 02 2011 *)
PROG
(PARI) a(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) \\ Charles R Greathouse IV, Jul 30 2012
(Haskell)
import Data.List (genericIndex)
a010056 = genericIndex a010056_list
a010056_list = 1 : 1 : ch [2..] (drop 3 a000045_list) where
ch (x:xs) fs'@(f:fs) = if x == f then 1 : ch xs fs else 0 : ch xs fs'
-- Reinhard Zumkeller, Oct 10 2013
(Python)
from sympy.ntheory.primetest import is_square
def A010056(n): return int(is_square(m:=5*n**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023
CROSSREFS
Decimal expansion of Fibonacci binary is in A084119.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A079586 (Dirich. g.f. at s=1).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved