Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026826
Number of partitions of n into distinct parts, the least being 5.
4
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 20, 23, 26, 29, 34, 38, 43, 49, 55, 62, 70, 79, 88, 100, 111, 125, 140, 157, 174, 196, 217, 243, 270, 301, 333, 372, 411, 457, 506, 561, 619, 687, 757, 837, 924, 1019, 1122
OFFSET
0,19
LINKS
FORMULA
a(n) = A025151(n-5), n>5. - R. J. Mathar, Jul 31 2008
G.f.: x^5*Product_{j>=6} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: Sum_{k>=1} x^(k*(k + 9)/2) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-5)*(i+6)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> `if`(n<5, 0, b(n-5$2)):
seq(a(n), n=0..80); # Alois P. Heinz, Feb 07 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-5)*(i+6)/2 < n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n<5, 0, b[n-5, n-5]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 5], {n, 66}]] (* Robert Price, Jun 13 2020 *)
CROSSREFS
Sequence in context: A241826 A237979 A264591 * A025151 A026801 A185328
KEYWORD
nonn,easy
STATUS
approved