Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A026825
Number of partitions of n into distinct parts, the least being 4.
4
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 20, 23, 26, 30, 35, 39, 45, 51, 58, 66, 75, 84, 96, 108, 122, 137, 155, 173, 195, 219, 245, 274, 307, 342, 383, 427, 475, 529, 589, 654, 727, 807, 894, 991, 1098, 1214, 1343, 1485, 1638, 1809
OFFSET
0,16
LINKS
FORMULA
a(n) = A025150(n-4), n>4. - R. J. Mathar, Jul 31 2008
G.f.: x^4*Product_{j>=5} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: Sum_{k>=1} x^(k*(k + 7)/2) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-4)*(i+5)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> `if`(n<4, 0, b(n-4$2)):
seq(a(n), n=0..80); # Alois P. Heinz, Feb 07 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-4)*(i+5)/2 < n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n<4, 0, b[n-4, n-4]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 4], {n, 66}]] (* Robert Price, Jun 13 2020 *)
CROSSREFS
Sequence in context: A025157 A006141 A185229 * A025150 A026800 A185327
KEYWORD
nonn
STATUS
approved