OFFSET
0,12
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
FORMULA
G.f.: Product_{j>=5} (1+x^j). - Emeric Deutsch, Apr 17 2006
a(n) = A026825(n+4). - R. J. Mathar, Jul 31 2008
a(n) ~ exp(Pi*sqrt(n/3)) / (64*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 30 2015
G.f.: Sum_{k>=0} x^(k*(k + 9)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020
EXAMPLE
a(12) = 2 because we have [12] and [7,5].
MAPLE
g:=product(1+x^j, j=5..70)-1: gser:=series(g, x=0, 60): seq(coeff(gser, x, n), n=1..53); # Emeric Deutsch, Apr 17 2006
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-4)*(i+5)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..100); # Alois P. Heinz, Feb 07 2014
MATHEMATICA
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 5 &]; Table[d[n], {n, 16}] (* strict partitions, parts >= 5 *)
Table[Length[d[n]], {n, 40}] (* A025150 for n >= 1 *)
(* Clark Kimberling, Mar 07 2014 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[(i-4)*(i+5)/2<n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
nmax = 100; CoefficientList[Series[Product[1+x^k, {k, 1, nmax}] / ((1+x)*(1+x^2)*(1+x^3)*(1+x^4)), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 30 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved