Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A037143
Numbers with at most 2 prime factors (counted with multiplicity).
68
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118
OFFSET
1,2
COMMENTS
A001222(a(n)) <= 2; A054576(a(n)) = 1. - Reinhard Zumkeller, Mar 10 2006
Products of two noncomposite numbers. - Juri-Stepan Gerasimov, Apr 15 2010
Also, numbers with permutations of all divisors only with coprime adjacent elements: A109810(a(n)) > 0. - Reinhard Zumkeller, May 24 2010
A060278(a(n)) = 0. - Reinhard Zumkeller, Apr 05 2013
1 together with numbers k such that sigma(k) + phi(k) - d(k) = 2k - 2. - Wesley Ivan Hurt, May 03 2015
Products of two not necessarily distinct terms of A008578 (the same relation between A000040 and A001358). - Flávio V. Fernandes, May 28 2021
LINKS
Felix Fröhlich, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
Andreas Weingartner, Uniform distribution of alpha*n modulo one for a family of integer sequences, arXiv:2303.16819 [math.NT], 2023.
MAPLE
with(numtheory): A037143:=n->`if`(bigomega(n)<3, n, NULL): seq(A037143(n), n=1..200); # Wesley Ivan Hurt, May 03 2015
MATHEMATICA
Select[Range[120], PrimeOmega[#] <= 2 &] (* Ivan Neretin, Aug 16 2015 *)
PROG
(Haskell)
a037143 n = a037143_list !! (n-1)
a037143_list = 1 : merge a000040_list a001358_list where
merge xs'@(x:xs) ys'@(y:ys) =
if x < y then x : merge xs ys' else y : merge xs' ys
-- Reinhard Zumkeller, Dec 18 2012
(PARI) is(n)=bigomega(n)<3 \\ Charles R Greathouse IV, Apr 29 2015
(Python)
from math import isqrt
from sympy import primepi, primerange
def A037143(n):
def f(x): return int(n-2+x-primepi(x)-sum(primepi(x//k)-a for a, k in enumerate(primerange(isqrt(x)+1))))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Union of A008578 and A001358. Complement of A033942.
A101040(a(n))=1 for n>1.
Subsequence of A037144. - Reinhard Zumkeller, May 24 2010
A098962 and A139690 are subsequences.
Sequence in context: A325457 A063538 A167207 * A236105 A292050 A377525
KEYWORD
nonn
EXTENSIONS
More terms from Henry Bottomley, Aug 15 2001
STATUS
approved