Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A054374
Discriminant of Hermite polynomials.
3
1, 32, 55296, 7247757312, 92771293593600000, 141830962344853556428800000, 30619440571316366848044102687129600000, 1077325790213073725701226681195621188514296627200000
OFFSET
1,2
COMMENTS
A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego eq. (6.71.7). - Alan Sokal, Mar 02 2012
REFERENCES
G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.
LINKS
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
Eric Weisstein's World of Mathematics, Hermite Polynomial.
FORMULA
a(n) = 2^(3*n*(n-1)/2) * Product_{k=1..n} k^k.
a(n) ~ A * 2^(3*n*(n-1)/2) * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Mar 02 2023
MATHEMATICA
Table[2^(3n(n-1)/2)Product[k^k, {k, 1, n}], {n, 1, 8}] (* Indranil Ghosh, Feb 24 2017 *)
PROG
(PARI) for(n=1, 8, print1(2^(3*n*(n-1)/2)*prod(j=1, n, j^j), ", ")) \\ G. C. Greubel, Jun 10 2018
(Magma) [Round(2^(3*n*(n-1)/2)*(&*[j^j: j in [1..n]])): n in [1..8]]; // G. C. Greubel, Jun 10 2018
CROSSREFS
Cf. A002109.
Sequence in context: A159396 A362175 A221086 * A221138 A017009 A176030
KEYWORD
nonn
STATUS
approved