Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A065710
Number of 2's in the decimal expansion of 2^n.
20
0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 2, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 1, 1, 0, 1, 4, 0, 3, 1, 2, 0, 1, 1, 3, 3, 3, 1, 2, 0, 1, 2, 1, 2, 2, 2, 3, 1, 3, 0, 2, 2, 3, 3, 2, 2, 4, 4, 4, 0, 1, 2, 4, 3, 1, 3, 6, 2, 0, 2, 4, 4, 4, 2, 3, 6, 2, 1, 5, 1, 2, 4, 4, 1, 2, 6
OFFSET
0,19
COMMENTS
2^31 = 2147483648 so a(31) = 1.
See A034293 for indices of zeros: It is conjectured that the last 0 appears at index 168 = A094776(2). More generally, I conjecture that the last occurrence of the term x = 0, 1, 2, 3, ... is at index i = (168, 176, 186, 268, 423, 361, 472, 555, 470, 562, 563, 735, ...). - M. F. Hasler, Feb 10 2023
LINKS
M. F. Hasler, Table of n, a(n) for n = 0..10000 (first 1001 terms from Harry J. Smith), Feb 10 2023
FORMULA
a(n) = a(floor(n/10)) + [n == 2 (mod 10)], where [...] is the Iverson bracket. - M. F. Hasler, Feb 10 2023
MATHEMATICA
Table[ Count[ IntegerDigits[2^n], 2], {n, 0, 100} ]
PROG
(PARI) a(n) = #select(x->(x==2), digits(2^n)); \\ Michel Marcus, Jun 15 2018
(Python)
def A065710(n):
return str(2**n).count('2') # Chai Wah Wu, Feb 14 2020
CROSSREFS
Cf. 0's A027870, 1's A065712, 3's A065714, 4's A065715, 5's A065716, 6's A065717, 7's A065718, 8's A065719, 9's A065744.
Sequence in context: A244606 A273127 A103272 * A089799 A073464 A142242
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Dec 04 2001
EXTENSIONS
More terms from Robert G. Wilson v, Dec 07 2001
STATUS
approved