Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088314 Cardinality of set of sets of parts of all partitions of n. 33
1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 30, 37, 51, 61, 79, 96, 124, 148, 186, 222, 275, 326, 400, 473, 575, 673, 811, 946, 1132, 1317, 1558, 1813, 2138, 2463, 2893, 3323, 3882, 4461, 5177, 5917, 6847, 7818, 8994, 10251, 11766, 13334, 15281, 17309, 19732, 22307 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of different values of A007947(m) when A056239(m) is equal to n.
From Gus Wiseman, Sep 11 2023: (Start)
Also the number of finite sets of positive integers that can be linearly combined using all positive coefficients to obtain n. For example, the a(1) = 1 through a(7) = 12 sets are:
{1} {1} {1} {1} {1} {1} {1}
{2} {3} {2} {5} {2} {7}
{1,2} {4} {1,2} {3} {1,2}
{1,2} {1,3} {6} {1,3}
{1,3} {1,4} {1,2} {1,4}
{2,3} {1,3} {1,5}
{1,4} {1,6}
{1,5} {2,3}
{2,4} {2,5}
{1,2,3} {3,4}
{1,2,3}
{1,2,4}
(End)
LINKS
FORMULA
a(n) = 2^(n-1) - A070880(n). - Alois P. Heinz, Feb 08 2019
a(n) = A365042(n) + 1. - Gus Wiseman, Sep 13 2023
EXAMPLE
The 7 partitions of 5 and their sets of parts are
[ #] partition set of parts
[ 1] [ 1 1 1 1 1 ] {1}
[ 2] [ 2 1 1 1 ] {1, 2}
[ 3] [ 2 2 1 ] {1, 2} (same as before)
[ 4] [ 3 1 1 ] {1, 3}
[ 5] [ 3 2 ] {2, 3}
[ 6] [ 4 1 ] {1, 4}
[ 7] [ 5 ] {5}
so we have a(5) = |{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {5}}| = 6.
MAPLE
list2set := L -> {op(L)};
a:= N -> list2set(map( list2set, combinat[partition](N) ));
seq(nops(a(n)), n=0..30);
# Yogy Namara (yogy.namara(AT)gmail.com), Jan 13 2010
b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
{b(n, i-1)[], seq(map(x->{x[], i}, b(n-i*j, i-1))[], j=1..n/i)}))
end:
a:= n-> nops(b(n, n)):
seq(a(n), n=0..40);
# Alois P. Heinz, Aug 09 2012
MATHEMATICA
Table[Length[Union[Map[Union, IntegerPartitions[n]]]], {n, 1, 30}] (* Geoffrey Critzer, Feb 19 2013 *)
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i < 1, {},
Union@Flatten@{b[n, i - 1], Table[If[Head[#] == List,
Append[#, i]]& /@ b[n - i*j, i - 1], {j, 1, n/i}]}]];
a[n_] := Length[b[n, n]];
a /@ Range[0, 40] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
combp[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 1, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[Join@@Array[IntegerPartitions, n], UnsameQ@@#&&combp[n, #]!={}&]], {n, 0, 15}] (* Gus Wiseman, Sep 11 2023 *)
PROG
(Haskell)
a066186 = sum . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
(Python)
from sympy.utilities.iterables import partitions
def A088314(n): return len({tuple(sorted(set(p))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023
CROSSREFS
Cf. A182410.
The complement in subsets of {1..n-1} is A070880(n) = A365045(n) - 1.
The case of pairs is A365315, see also A365314, A365320, A365321.
A116861 and A364916 count linear combinations of strict partitions.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364914 and A365046 count combination-full subsets.
Sequence in context: A023025 A130898 A199016 * A304405 A347446 A097071
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Nov 05 2003
EXTENSIONS
More terms and clearer definition from Vladeta Jovovic, Apr 21 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 09:19 EDT 2024. Contains 375284 sequences. (Running on oeis4.)